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1.	Objectives	
This	is	a	special	topic	course	taught	at	the	Department	of	Statistics	and	Operations	
Research,	 UNC-Chapel	 Hill.	 The	 primary	 goal	 is	 to	 discuss	 recent	 development	 in	
modern	 convex	 optimization	 and	 its	 applications	 to	 statistical	 learning,	 machine	
learning,	 and	 other	 areas	 of	 sciences.	 It	 aims	 at	 developing	 fundamental	 theory,	
methodology,	 and	 implementation	 aspects	 of	 modern	 convex	 optimization	 for	
students	as	a	mathematical	 tool	 to	solve	a	wide	range	of	real-world	problems.	We	
mainly	 focus	 on	 how	 to	 design	 efficient	 methods,	 how	 to	 implement	 them	 and	
illustrate	them	on	existing	convex	optimization	models.	We	expect	to	show	students	
what	 has	 been	 done	 and	 give	 pointers	 to	 important	 open	 problems	 in	 convex	
optimization.	 We	 also	 expect	 to	 inspire	 students	 how	 to	 select	 an	 appropriate	
optimization	method	for	a	given	optimization	problem	in	practice.		
	
The	course	is	designed	for	graduate	students	who	have	some	background	in	applied	
math	such	as	linear	algebra,	multivariable	analysis	and	computational	skills.		
	
2.	Time	and	Place	
							Lectures:	Mondays	and	Wednesdays,	1:25	–	2:40PM	(Hanes	107).	
		
3.	Staff	
							Instructor:	Quoc	Tran-Dinh	(quoctd@email.unc.edu)	
							Office:		333	Hanes	Hall,	UNC-Chapel	Hill.	
	
4.	Syllabus	
This	course	consists	of	three	parts:	

A. Representative	convex	optimization	models	in	applications	
B. Fundamental	concepts	in	convex	optimization:	a	brief	overview	
C. Selected	first-order	methods	for	large-scale	convex	optimization	
D. Selected	 primal-dual	 methods	 for	 large-scale	 constrained	 convex	

optimization	
Depending	on	 time	quota,	 some	 topics	may	be	skipped	and	some	may	have	
more	emphasis.	

	
Regarding	these	three	parts,	we	plan	to	cover	the	following	topics:	
Part	 1:	 Representative	 convex	 optimization	models	 in	 applications	 (3	
lectures):	
	
	
	



Optimization	 plays	 a	 major	 role	 in	 many	 fundamental	 areas	 of	 statistics	
including	 the	 maximum	 likelihood	 principle;	 of	 machine	 learning	 such	 as	
Google	page	rank	or	movie	 rating	 from	Netflix;	of	 image	processing	such	as	
the	reconstruction	of	a	clean	image	from	a	noisy	one;	and	of	control	such	as	
the	design	of	a	good	strategy	to	stabilize	a	system.	We	discuss	in	this	part	the	
mathematical	form	of	an	optimization	problem;	what	do	we	mean	by	“solving	
an	optimization	problem”?;	how	do	we	classify		an	optimization	problem	into	
different	classes;	and	provide	some	well-known	and	representative	examples.	
Specifically,	we	discuss	the	following	topics:	
					1.	Mathematical	formulation	of	an	optimization	problem	
					2.	Classifying	optimization	problems	and	the	choice	of	methods.	
					3.	Representative	applications	
											+	Least	squares,	Basis	pursuit,	LASSO	and	beyond	
											+	Logistic	regression	and	extensions	
											+	Support	vector	machine:	linear	and	nonlinear	cases	
											+	Image	reconstruction	with	total	variation	norms	
											+	Matrix	completion	and	robust	principal	component	analysis	
											+	Sparse	inverse	covariance	selection	in	graphical	models	
					4.	Other	related	applications	
We	 concentrate	 on	 how	 to	 formulate	 these	 applications	 into	 a	 convex	
optimization	problem.	Then,	we	investigate	some	explicit	properties	of	these	
problems	to	find	an	appropriate	method	for	efficiently	solving	them.	
	

Part	2.	Fundamental	concepts	in	convex	optimization:	A	brief	overview	
(5	lectures)	
We	only	give	a	very	short	review	on	some	concepts	and	tools	needed	for	this	
course.	We	do	not	go	deeply	in	convex	analysis.	If	students	already	had	some	
background	 in	 convex	 analysis	 and	 linear	 algebra,	 some	 topics	 can	 be	
skipped.	 But	 other	 topics	 such	 as	 proximal	 operators	 and	 monotone	
operators	 are	 rarely	 covered	 in	 a	 convex	 analysis	 course,	 and	 they	 remain	
worthy	of	study.		More	concretely,	we	cover	the	following	topics:	
1. Convex	sets	and	convex	functions	
2. Fenchel	conjugates	
3. Proximal	operators	and	projections	
4. Proximity	functions,	and	Bregman	divergences	
5. Duality	theory	
6. Theory	of	monotone	operators	
7. Convergence	analysis	and	complexity	theory.	

	
Part	3:	Selected	first	order	methods	for	large-scale	convex	optimization	
(10	lectures)	



Modern	applications	require	convex	optimization	on	a	huge-scale.	Traditional	
approaches	 such	 as	 interior-points	 and	 Newton	 methods	 are	 no	 longer	
efficient	 to	 tackle	 these	 models.	 In	 addition,	 not	 only	 the	 size	 of	 problems	
matters,	 but	 the	 structure	 of	 problems	 is	 also	 getting	 more	 and	 more	
complicated.	 These	 challenges	 require	 new	 thoughts	 on	 the	 design	 of	
optimization	 algorithms.	 One	 opportunity	 to	 solve	 these	 problems	 is	 using	
low-cost	 optimization	 methods	 such	 as	 first-order	 algorithms.	 While	 these	
methods	have	low	complexity-per-iteration,	they	often	have	slow	convergent	
speed.	 This	 part	 discusses	 some	 recent	 development	 on	 gradient-type	
methods	for	large-scale	problems.	The	topics	covered	in	this	part	include:	
1. Gradient	method	and	accelerated	gradient	methods:	mathematical	 view,	

algorithms,	 convergence	 analysis,	 implementation,	 and	 enhancements	
(e.g.,	line-search,	preconditioning,	and	restart).	

2. Proximal	 gradient	 and	 accelerated	 proximal	 gradient	 methods:	
algorithms,	 convergence	 and	 complexity	 analysis,	 examples	 and	
enhancements.	

3. Mirror	descent	methods	–	beyond	the	Euclidean	norm	
4. Conditional	gradient	(Frank-Wolfe)	methods	
5. Splitting	methods:	Forward-backward	and	Douglas-Rachford	splitting	
6. Coordinate	descents	for	huge-scale	convex	optimization:	Randomized	and	

cycling	coordinate	descents,	and	parallel	variants.	
7. Stochastic	gradient	descent	methods:	Empirical	 risk	minimization;	 basic	

method;	 stochastic	 dual	 averaging	 scheme;	 stochastic	 variance	
reduction	gradient	method	(SVRG);	and	accelerated	variants.	

All	 these	 methods	 often	 require	 implementation	 and	 application	 to	 some	
specific	examples	given	in	Part	1.	Note	that,	we	only	cover	the	two	last	topics	
if	time	allows.	
	
Part	4:	Selected	primal-dual	methods	for	large-scale	constrained	convex	
optimization	(6	lectures).	
So	 far	 we	 have	 only	 looked	 at	 the	 methods	 for	 unconstrained	 and	 simple	
constrained	 convex	 problems.	 What	 about	 problems	 with	 complicated	
constraints,	 such	 as	 problem	 in	 networks	 or	 graphs	 where	 we	 have	 flow	
constraints?	These	problems	require	different	approaches	to	solve	efficiently.		
In	 this	 section	we	discuss	 some	basic	 and	well-know	methods	 for	min-max	
saddle-point	 and	 constrained	 convex	 optimization	 problems.	 More	
specifically,	we	consider	the	following	topics:	
	

1. Minmax	formulation	and	primal-dual	pair.	
2. Dual	ascent	and	how	to	recover	a	primal	solution	from	its	dual	
3. Penalty	and	augmented	Lagrangian	methods	



4. Alternating	 minimization	 algorithm	 (AMA),	 and	 alternating	 direction	
methods	of	multipliers	(ADMM):	from	theory,	algorithms	to	applications	

5. Chambolle-Pock	primal	dual	methods	and	variants.	
6. Other	primal-dual	methods	

	
5.	Course	material	
Lecture	notes:	Some	lecture	notes	will	be	provided.	It	must	be	used	internally	in	the	
course.	Please	do	not	distribute	this	material.	
	
Books:	Here	are	some	books	which	contain	some	parts	of	the	lectures	
[B1].	 R.	 T.	 Rockafellar:	 Convex	 Analysis,	 1970,	 Princeton	 Univ.	 Press		
(http://www.convexoptimization.com/TOOLS/ConvexAnalysis.pdf).	
[B2].	S.	Boyd	and	L.	Vandenberghe:	Convex	Optimization,	2006,	Cambridge	Univ.	
Press	(http://stanford.edu/~boyd/cvxbook/)	
[B3].	 Y.	 Nesterov:	 Introductory	 lectures	 on	 Convex	 Optimization,	 2004.	 (His	
lectures	 can	 be	 found	 here:	
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.855&rep=rep1
&type=pdf).	
[B4].	H.H.	Bauschke	and	P.	Combettes:	Convex	Analysis	and	Monotone					Operator	
Theory	in	Hilbert	Spaces,	Springer,	2011.	
[B5].	D.	Bertsekas,	Convex	Optimization	Theory/Algorithms,	2009,	2015.		
	

Other	material:	These	are	good	surveys/lecture	notes	for	the	course	
[S1].	 S.	 Boyd	 et	 al:	 Distributed	 optimization	 and	 statistical	 learning	 via	 the	
alternating	direction	method	of	multipliers,	Foundations	and	Trends	in	Machine	
Learning,	3(1):1–122,	2011.	
[S2].	 N.	 Parikh	 and	 S.	 Boyd:	 Proximal	 algorithms,	 Foundations	 and	 Trends	 in	
Optimization,	1(3):123-231,	2014.	
[L1].	 S.	 Bubeck,	 Convex	 Optimization:	 Algorithms	 and	 Complexity,	
http://arxiv.org/abs/1405.4980.	
	

Selected	papers:	These	are	some	remarkable	papers:			
[P1].	 Y.	 Nesterov,	 A	 method	 of	 solving	 a	 convex	 programming	 problem	 with	
convergence	 rate	 O	 (1/k2),	 Soviet	 Mathematics	 Doklady,	 1983	 (translated	 to	
English).		
This	is	the	original	paper	on	the	fast	gradient	method.	
[P2].	A.	Beck	and	M.	Teboulle,	A	Fast	Iterative	Shrinkage-Thresholding	Algorithm	
for	Linear	Inverse	Problems,	SIAM	J.	Imaging	Sciences,	2009.	
This	 paper	makes	 fast	 proximal	 gradient	method	 become	 popular,	 the	 proof	 is	
elementary	and	easy	to	read.	
[P3].	 Y.	 Nesterov,	 Smooth	minimization	 of	 non-smooth	 functions,	Mathematical	
Programming,	2005.	
This	paper	renews	[P1]	and	makes	fast	gradient	method	become	a	new	trend	for	
large-scale	convex	optimization.	



[P4].	 	P.	Tseng,	On	Accelerated	Proximal	Gradient	Methods	 for	Convex-Concave	
Optimization,	Online	paper,	2008.	
This	paper	provides	a	deep	theory	for	accelerated	gradient	methods.	
[P5].	 Y.	 Nesterov,	 Efficiency	 of	 Coordinate	 Descent	 Methods	 on	 Huge-Scale	
Optimization	Problems,	SIAM	J.	Optimization,	2012.	
This	paper	re-popularizes	the	coordinate	descent	again	for	big-data	applications	
[P6].	 M.	 Jaggi,	 Revisiting	 Frank-Wolfe:	 Projection-Free	 Sparse	 Convex	
Optimization,	ICML	2013.	
This	paper	revisits	 the	classical	FW	method	since	1950,	but	makes	 it	 extremely	
useful	for	machine	learning	(and	others)	applications.		
[P7].	 	 A	 Nemirovski,	 A	 Juditsky,	 G	 Lan,	 A	 Shapiro,	 Robust	 stochastic	
approximation	approach	to	stochastic	programming,	SIAM	J.	Optimization,	2009.	
This	paper	proposes	an	averaging	strategy	for	stochastic	gradient	descent,	which	
is	the	foundation	theory	for	many	following	works.	
	[P8].	 N.	 Le	 Noux,	 M.	 Schmidt,	 F.	 Bach,	 A	 Stochastic	 Gradient	 Method	 with	 an	
Exponential	Convergence	Rate	for	Finite	Training	Sets,	NIPS,	2013.	
This	paper	provides	a	very	efficient	method	for	some	machine	learning	problems.	
	[P9].	 R.	 Johnson,	 T.	 Zhang,	 Accelerating	 Stochastic	 Gradient	 Descent	 using	
Predictive	Variance	Reduction,	NIPS	2014.	
A	new	idea	of	variance	reduction	for	optimization	methods	starts	from	this	paper.	
[P10].	 J	Eckstein,	DP	Bertsekas,	On	the	Douglas—Rachford	splitting	method	and	
the	 proximal	 point	 algorithm	 for	 maximal	 monotone	 operators,	 Mathematical	
Programming,	1992.	
This	paper	is	on	spitting	methods,	which	become	extremely	popular	nowadays.	

	
References:	The	references	are	given	at	the	end	of	each	lecture.	

	
6.	Course	evaluation:	

-	Homework:	A	few	homework	assignments	will	be	given	during	class	(30%).	
-	Projects:	Students	work	on	projects	(teamwork	or	individually)	(70%)	(select	
one	of	the	following	formats).		
+	Students	are	asked	to	read	one	or	few	papers,	or	book	chapters,	then	write	a	
short	report	(maximum	8	pages)	and	present	in	class.	
+	Students	are	asked	to	work	on	an	optimization	problem,	and	implement	some	
algorithms	 to	 solve	 it,	 then	 test	 the	 algorithms	 on	 synthetic	 and/or	 real	
datasets,	and	then	write	a	short	report	(maximum	8	pages)	and	present	in	class.	
-	Exam:	There	will	be	no	written	exam.			


