
Graduate Topic Course - STOR 893

Selected Methods for Modern Optimization in Data
Analysis

(Fall 2018)

Course overview
This is a special topic course taught at the Department of Statistics and Operations Research, UNC-
Chapel Hill. The primary goal is to discuss recent development in numerical methods for solving
modern optimization applications from different areas of data analysis. The content of this course
consists of 4 parts ranging from modeling and foundation theory to algorithms and their convergence
guarantees. We will focus on different aspects of several optimization methods including the design
of algorithms, convergence guarantees, computational complexity, implementation, improvements,
and applications. We will also discuss the advantages and disadvantages of each optimization
method on different problem classes. We expect to inspire students how to select an appropriate
numerical method for a given optimization model in practice.

The course is designed for graduate students who have some background in applied math such
as linear algebra, multivariable analysis, and computational skills. Background in convex analysis,
numerical linear algebra, algorithms, or statistics is also preferable to better follow the course.

Time and Place

Lectures: Tuesdays and Thursdays, 12:30PM - 1:45PM (Hanes 125).

Instructor

Instructor: Quoc Tran-Dinh (quoctd@email.unc.edu)
Personal webpage: http://quoctd.web.unc.edu.

Office: 333 Hanes Hall, UNC-Chapel Hill.

Course content

This course consists of four parts:

A. Representative optimization models in applications

B. Fundamental concepts and basic theory in optimization

C. Selected first-order methods for convex optimization

D. Selected methods for some classes of nonconvex optimization.

Depending on time quota, some topics may be skipped, and some may have more emphasis.
Regarding these four parts, we plan to cover the following topics:
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Part 1: Representative optimization models in applications

Optimization plays a major role in many fundamental areas of statistics including the maximum
likelihood principle; of machine learning such as Google page ranks, movie ratings from Netflix, or
deep learning; of image processing such as the reconstruction of a clean image from a noisy one;
and of control such as the design of a good strategy to stabilize a system. We discuss in this part
the mathematical forms of an optimization problem, what we mean by ”solving an optimization
problem”, how we classify an optimization problem into different classes, and provide some well-
known and representative examples. Specifically, we discuss the following topics:

1. Mathematical formulation of an optimization problem.

2. Classifying optimization problems and the choice of methods.

3. Representative applications:

• Least squares, basis pursuit, and LASSO.

• Logistic regression and extensions

• Support vector machine: linear and nonlinear cases

• Image reconstruction with total variation (TV) norms

• Matrix completion and robust principal component analysis

• Sparse inverse covariance selection in graphical models

• Nonnegative matrix factorization models

• Optimization models in deep neural networks

We will concentrate on how to formulate these applications into a convex/nonconvex optimization
problem. Then, we investigate some explicit properties of these problems to find an appropriate
method for efficiently solving them. Depending the available time, some applications are emphasized
or just briefly discussed.

Part 2. Fundamental concepts and basic theory in optimization

We will have a very short review on some concepts and tools needed for this course. We do not
go deeply in convex analysis or other mathematical tools. Depending on how much students are
familiar with convex analysis and numerical linear algebra, some topics can be skipped. But other
topics such as proximal operators and monotone operators are rarely covered in a convex analysis
course, and they remain worthy to study. More concretely, we will cover the following topics:

1. Convex sets and convex functions.

2. Proximal operators, projections, and monotone operators.

3. Fenchel conjugates and Bregman divergences.

4. Optimality conditions and Karush-Kuhn-Tucker (KKT) conditions.

5. Duality theory.

6. Convergence rates and complexity theory.
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Part 3: Selected first-order methods for convex optimization

Modern applications require convex optimization on a huge scale. Traditional approaches such as
interior-points and Newton methods are no longer efficient to tackle these models. In addition, not
only the size of problems matters, but the structure of problems is also getting more and more
complicated. These challenges require new ideas on the design of optimization algorithms. One
way to solve these problems is using low-cost optimization methods such as first-order algorithms
or stochastic methods. While these methods have low complexity-per-iteration, they often have
slow convergent speed. This first half of Part 3 will discuss some recent development in first-order
methods for large-scale problems. In the second half, we will provide some advanced methods for
large-scale constrained convex problems and min-max saddle-point problems. More specifically, we
will look at the following topics:

1. Gradient and proximal methods, and their accelerated variants: mathematical view, algo-
rithms, convergence analysis, implementation, and enhancements (e.g., line-search, precondi-
tioning, and restart).

2. Mirror descent methods and conditional gradient (Frank-Wolfe) methods.

3. Coordinate descents for huge-scale convex optimization: Randomized and cycling coordinate
descents, and parallel variants.

4. Stochastic gradient descent methods: Empirical risk minimization; basic method; stochastic
dual averaging scheme; stochastic variance reduction gradient method (SVRG); and acceler-
ated variants.

5. Min-max formulation and primal-dual pair.

6. Dual ascent and how to recover a primal solution from its dual.

7. Penalty and augmented Lagrangian methods.

8. Douglas-Rachford’s splitting method and alternating direction methods of multipliers (ADMM):
from theory, algorithms to applications.

9. Primal-dual first-order methods: Chambolle-Pock’s method, and primal-dual hybrid gradient
method.

All these methods often require implementation and application to some specific examples given in
Part 1. Due to time limits, some topics may have a brief discussion.

Part 4: Selected methods for some classes of nonconvex optimization

So far, we have only looked at methods for convex problems. What about nonconvex problems,
such as nonnegative matrix factorization, and deep neutral networks? These problems require
different approaches to efficiently solve them. Nonconvex optimization is currently an extremely
active research field due to the era of data science and deep learning. In this section, we will discuss
some well-known and widely used methods for some classes of nonconvex optimization problems.
More specifically, we will cover the following topics:

1. Gradient-type methods for nonconvex problems.

2. Newton-type methods and quasi-Newton-type methods.

3. DC (different of two convex functions) algorithms (DCAs).

4. Alternating optimization methods for nonconvex problems.
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Course materials

Lecture notes

Lecture notes will be provided to students via the Sakai system. They must be used internally in
the course. Please do not distribute these materials.

Books

Here are some books which contain some parts of the lectures

[B1]. R. T. Rockafellar: Convex Analysis, 1970, Princeton Univ. Press. This book is now available
online for free and can be downloaded from http://www.convexoptimization.com/TOOLS/

ConvexAnalysisRockafellar.pdf.

[B2]. S. Boyd and L. Vandenberghe: Convex Optimization, 2006, Cambridge Univ. Press. This
book is available for free at http://stanford.edu/~boyd/cvxbook/.

[B3]. Y. Nesterov: Introductory lectures on Convex Optimization, 2004. The lectures can be
found at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.855&rep=

rep1&type=pdf.

[B4]. H. H. Bauschke and P. Combettes: Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Springer-Verlag, 2017.

[B5]. D. Bertsekas, Convex Optimization Theory/Algorithms, Athena Scientific, 2009.

[B6]. J. Nocedal and S. Wright, Numerical Optimization, Springer-Verlag, 2006.

Other materials

These are good surveys/lecture notes for the course

[S1]. S. Boyd et al: Distributed optimization and statistical learning via the alternating direction
method of multipliers, Foundations and Trends in Machine Learning, 3(1):1-122, 2011.

[S2]. N. Parikh and S. Boyd: Proximal algorithms, Foundations and Trends in Optimization,
1(3):123-231, 2014.

[L1]. S. Bubeck, Convex Optimization: Algorithms and Complexity. This lecture note can be
downloaded from http://arxiv.org/abs/1405.4980.

[S3]. S. Wright, Optimization Algorithms in Data Analysis. This survey paper is available online
at http://www.optimization-online.org/DB_FILE/2016/12/5748.pdf

[B1]. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, The MIT Press, 2016.

Selected papers

These are some remarkable papers:

[P1]. Y. Nesterov, A method of solving a convex programming problem with convergence rate
O(1/k2), Soviet Mathematics Doklady, 1983 (translated to English). This is the original
paper on the fast gradient method.

[P2]. A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems, SIAM J. Imaging Sciences, 2009. This paper makes fast proximal gradient
method become popular, the proof is elementary and easy to read.

[P3]. Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Programming,
2005. This paper renews [P1] and makes fast gradient method become a new trend for large-
scale convex optimization.
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[P4]. P. Tseng, On Accelerated Proximal Gradient Methods for Convex-Concave Optimization,
Online paper, 2008. This paper provides a deep theory for accelerated gradient methods.

[P5]. Y. Nesterov, Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Prob-
lems, SIAM J. Optimization, 2012. This paper re-popularizes the coordinate descent again
for big-data applications.

[P6]. M. Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, ICML 2013.
This paper revisits the classical FW method since 1950, but makes it extremely useful for
machine learning (and others) applications.

[P7]. A Nemirovski, A Juditsky, G Lan, A Shapiro, Robust stochastic approximation approach
to stochastic programming, SIAM J. Optimization, 2009. This paper proposes an averaging
strategy for stochastic gradient descent, which is the foundation theory for many following
works.

[P8]. N. Le Noux, M. Schmidt, F. Bach, A Stochastic Gradient Method with an Exponential
Convergence Rate for Finite Training Sets, NIPS, 2013. This paper provides a very efficient
method for some machine learning problems.

[P9]. R. Johnson, T. Zhang, Accelerating Stochastic Gradient Descent using Predictive Variance
Reduction, NIPS 2014. A new idea of variance reduction for optimization methods starts
from this paper.

[P10]. J Eckstein, DP Bertsekas, On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators, Mathematical Programming, 1992. This paper
is on spitting methods, which become extremely popular nowadays.

[P11]. Y. Nesterov, Cubic regularization of Newton method and its global performance, Math. Pro-
gram., vol. 108, 2006.

[P12]. L.T. Hoai An, and P.D. Tao, The DC (difference of convex functions) programming and
DCA revisited with DC models of real world nonconvex optimization problems, Annals of
Operations Research 133 (1-4), 23-46, 2005.

References

The references are given at the end of each lecture.

Course evaluation

• Homework assignments: A few homework assignments will be given during class. They
will count for 30% of the final grade.

• Course projects: Students work on projects (in teams or individually). They will count for
70% of the final grade. Students can select one of the following two formats:

– Students are asked to read one or a few papers, or book chapters, then write a short
report (between 4 and 8 pages) and present it in class.

– Students are asked to work on an optimization problem, and implement some algorithms
to solve it, then test the algorithms on synthetic and/or real datasets, and then write a
short report (between 4 and 8 pages) and present it in class.

• Exams: There will be no written exam.
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