
Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering
Department of Electrical Engineering

Sequential Convex Programming and
Decomposition Approaches for Nonlinear
Optimization

−31.5

−21.5

−11.5

−1.5

8.5

18.5

28.531.5

−16

−6

4

14
16.2

Quoc Tran Dinh

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering Science

November 2012

Sequential Convex Programming and Decomposition
Approaches for Nonlinear Optimization

Quoc Tran Dinh

Jury:
Prof. Dr. Jean Berlamont, chair
Prof. Dr. Moritz Diehl, promotor
Prof. Dr. Johan Suykens
Prof. Dr. Jan Swevers
Prof. Dr. Joos Vandewalle
Prof. Dr. Stefan Vandewalle
Prof. Dr. Ion Necoara
(Automation and Systems Engineering

Department, University Politehnica of Bucharest,
Romania)
Prof. Dr. Yurii Nesterov
(CORE, Université Catholique de Louvain)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering Science

November 2012

© Katholieke Universiteit Leuven – Faculty of Engineering
Kasteelpark Arenberg 10, Bus 2446, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2012/7515/123
ISBN: 978-94-6018-589-2

i

Abstract

This thesis is devoted to studying numerical solution methods for some classes
of nonlinear optimization problems. These methods are motivated from the fact
that many optimization problems in practice possess certain structures such as
convexity, separability and sparsity. Moreover, solving a convex optimization
problem is more efficient and reliable than a nonconvex one by using the state-
of-the-art of convex optimization algorithms. Exploiting such specific structures
and convex optimization techniques can lead to more efficient and reliable
solution methods than conventional approaches.

The content of the thesis is divided into two parts. Part I studies the
sequential convex programming approach for solving nonconvex optimization
problems, both parametric nonlinear programming and nonconvex semidefinite
programming. A generic algorithmic framework which we call adjoint-
based predictor-corrector sequential convex programming is proposed to treat
parametric nonconvex optimization problems with general convex constraints.
The algorithm is based on three ingredients, namely sequential convex
programming, predictor-corrector path-following and adjoint-based optimization.
The stability of the tracking errors between approximation solutions and the true
ones is proved. Without parameters, the algorithm collapses to the one which
we call the sequential convex programming (SCP) method for solving nonconvex
optimization problems. As a special case of SCP, we develop a generalized inner
convex approximation method and a generalized convex-concave decomposition
algorithm for solving a class of nonconvex semidefinite programming problems.
We also show applications of these algorithms in static state/output feedback
controller design. Numerical results are benchmarked via several standard
numerical examples.

Part II deals with decomposition approaches for separable optimization, both in
the convex and nonconvex case. We develop several decomposition methods for
solving separable convex optimization problems. The first class of algorithms is
based on two main ingredients, namely smoothing via prox-functions and the
excessive gap technique. The convergence of these algorithms is proved and
the convergence rate is estimated. Extensions to the strongly convex case and
inexact cases are also considered. The second class of algorithms makes use of
smoothing techniques via self-concordant barrier functions and a path-following
method. The algorithms developed in this part can be implemented in a parallel
or distributed fashion. Several algorithmic variants are tested in numerical
examples. We also show an application of these algorithms to the nonconvex
case. This leads to a two-level decomposition algorithm for solving a class of
separable nonconvex optimization problems.

ii

Keywords: Sequential convex programming, decomposition method, path-
following, generalized inner convex approximation, convex-concave decom-
position, smoothing technique, parametric optimization, separable convex
optimization, parallel and distributed algorithm.

iii

Acknowledgements
This thesis has been completed during the years that I have spent as a PhD
student at the OPTEC and SISTA research groups.
First and foremost, I wish to thank my promotor, Professor Moritz Diehl, who
gave me the great opportunity to come to Leuven and guided my research.
Many thanks to him for the fruitful discussions and for inspiring many of the
ideas and results that are presented in this thesis. Above all, I thank him for
his trust and his guidance during my PhD period in Leuven. I have also learned
from him many great scientific skills which will be helpful for my future career.

I am also grateful to Dr. Michel Baes who, during his postdoc at OPTEC,
kindly helped me at the early stages of my PhD. My thanks go to the committee,
Professors Jan Swevers, Joos Vandewalle, Stefan Vandewalle, Johan Suykens,
Ion Necoara, Jean Berlamont and Yurii Nesterov, who have contributed with
helpful and constructive comments and suggestions to improve my thesis.
During my PhD period, I have been enjoying very much the scientific life
at SISTA/OPTEC and had a great opportunity to work in an international
environment. I had a lot of interaction and collaboration with many colleagues,
especially my thanks go to Professor Wim Michiels, Dr. Suat Gumussoy, Dr.
Carlo Savorgnan, Dr. Ion Necoara, Dr. Boris Houska, Dr. Paschalis Tsiaflakis,
Dr. Marco Signoretto, Attila Kozma, Joel Andersson who have closely
been working with me during my time in Leuven. I appreciated the whole
administrative staff at ESAT, who helped me a lot at any time that I came. My
special thanks to Mrs. Jacqueline De bruyn, Mrs. Ida Tassens, Mrs. Ilse Pardon,
Mrs. Elsy Vermoesen and Mr. John Vos for all their help.
I would like to thank other colleagues and friends who gave me very much
enjoyable moments both in private and scientific life. It is also an occasion
to thank my Vietnamese friends and the Vietnamese community who have
encouraged and helped me and my little family during our period in Belgium.
I also wish to thank my wife and my little son who have been going with me to
the end of this journey. They have inspired me the motivation to go beyond
several difficult moments in my life. I would like to thank my grandparents, my
parents and the whole family for their patience and support in all things that I
have been doing.
Finally, I want to stress that the thesis would not be completed if there were
not supported by KU Leuven Research Council, Optimization in Engineering
Center (OPTEC) and several PhD/postdoc and fellow grants.

Leuven, November 7, 2012
Quoc Tran Dinh

Contents

Contents v

List of acronyms and notations ix

1 Introduction 1

1.1 Motivation and objectives . 1

1.2 Three main concepts . 5

1.3 Contributions of the thesis and overview 8

I Sequential Convex Programming 13

2 Predictor-corrector sequential convex programming 15

2.1 Problem statement and contribution 15

2.2 Three ingredients of the algorithm 17

2.3 Adjoint-based predictor-corrector SCP algorithm 22

2.4 Contraction estimate . 24

2.5 Applications in nonlinear programming 39

2.6 Conclusion . 40

3 SCP applications in optimal control 43

v

vi CONTENTS

3.1 NMPC of a hydro power plant 43

3.2 Time optimal trajectory planning problem 52

4 Inner convex approximation methods for nonconvex SDP 63

4.1 A short literature review and contribution 63

4.2 Problem statement and optimality condition 65

4.3 Generalized inner convex approximation algorithms 69

4.4 Conclusion . 79

5 BMI optimization in robust controller design 81

5.1 BMI optimization in static feedback control 81

5.2 Implementation details . 82

5.3 Linear output-feedback controller design 85

5.4 H2 control: BMI optimization approach 90

5.5 H∞ control: BMI optimization approach 94

5.6 Mixed H2/H∞ control: BMI optimization approach 95

5.7 Conclusion . 101

II Decomposition in Separable Optimization 103

6 Existing approaches in separable optimization 105

6.1 Problem statements . 106

6.2 Related existing approaches . 108

6.3 Lagrangian decomposition in separable convex programming . . . 111

6.4 Parallel algorithms vs distributed algorithms 112

6.5 Benchmarking algorithms with performance profiles 114

7 Dual decomposition algorithms via the excessive gap technique 117

CONTENTS vii

7.1 Smoothing via proximity functions 118

7.2 Solution of primal subproblems and excessive gap condition . . 124

7.3 Decomposition algorithm with two primal steps 128

7.4 Decomposition algorithm with two dual steps 132

7.5 Decomposition algorithms with switching steps 137

7.6 Application to strongly convex case 142

7.7 Extensions to inexact case . 144

7.8 Comparison and implementation aspects 149

7.9 Numerical tests . 152

7.10 Conclusion . 161

8 Path-following gradient decomposition algorithms 163

8.1 Smoothing via self-concordant barrier functions 164

8.2 Path-following gradient-based decomposition algorithm 174

8.3 Accelerating gradient decomposition algorithm 181

8.4 Numerical tests . 185

8.5 Conclusion . 188

9 An inexact perturbed path-following decomposition algorithm 191

9.1 Self-concordance of smoothed dual function 192

9.2 Inexact perturbed path-following decomposition method 195

9.3 Exact path-following decomposition algorithm 210

9.4 Discussion on implementation 213

9.5 Numerical tests . 214

9.6 Conclusion . 217

10 Application to separable nonconvex optimization 219

10.1 SCP approach for separable nonconvex optimization 220

viii CONTENTS

10.2 Two-level decomposition algorithm 227

10.3 Numerical tests . 229

10.4 Conclusion . 231

11 Conclusion 233

11.1 Conclusion . 233

11.2 Future research directions . 236

A The proof of technical statements 239

A.1 The proof of technical statements in Chapter 7 239

A.2 The proof of technical statements in Chapter 9 251

Bibliography 259

Publications by the author contains in the thesis 277

List of acronyms and
notations

List of selected acronyms

AD Automatic Differentiation
ADMM Alternating Direction Method of Multipliers
APCSCP Adjoint-based Predictor-Corrector Sequential Convex

Programming
BFGS Broyden - Fletcher - Goldfarb - Shanno
BMI Bilinear Matrix Inequality
DAE Differential Algebraic Equation
DC Difference of two Convex functions
FASCP Full-step Adjoint-based Sequential Convex Programming
IP Interior Point
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualification
LMI Linear Matrix Inequality
MSSCP Multistage Stochastic Convex Programming
MPC Model Predictive Control
NMPC Nonlinear Model Predictive Control
NSDP Nonconvex Semidefinite Programming
ODE Ordinary Differential Equation
PCSCP Predictor-Corrector Sequential Convex Programming
QCQP Quadratically Constrained Quadratic Programming
QP Quadratic Programming
RTSCP Real-Time Sequential Convex Programming
SepCOP Separable Convex Optimization Problem
SCP Sequential Convex Programming
SepNCOP Separable Nonconvex Optimization Problem

ix

x LIST OF ACRONYMS AND NOTATIONS

SDP Semidefinite Programming
SOC Second Order Cone
SOSC Second Order Sufficient Condition
SQP Sequential Quadratic Programming
SSDP Sequential Semidefinite Programming
SSOSC Strong Second Order Sufficient Condition

List of selected symbols

Basic
x, y, f , g, . . . variables, functions or vectors
xi, yi, zi, . . . sub-vectors or vector components
A, B, Ω, . . . matrices or sets
xT , AT vector and matrix transpose
A−1, L−1 matrix inverse or inverse mapping
>,≥, <,≤ scalar or vector inequality
�,�,≺,� matrix inequality
bac maximum integer number which is less than or equal to a

Inner products and norms
xT y inner product of two vectors x and y
‖·‖ and ‖·‖∗ generic norm and its dual norm
‖·‖x local norm induced by a self-concordant function
‖·‖2 Euclidean norm
‖·‖Q Euclidean norm induced by a positive definite matrix Q
‖·‖F Frobenius norm of a matrix

Sets
R set of real numbers
R+ set of nonnegative numbers
R++ set of positive numbers
Rn set of n-real vectors
C set of complex numbers
Sn set of n× n symmetric matrices
Sn+ set of n× n symmetric positive semidefinite matrices
Sn++ set of n× n symmetric positive definite matrices
B(x, r) open ball of a radius r centered at x
dom(f) domain of a function f
X closure of a given set X
ri(X) relative interior of a given set X

LIST OF ACRONYMS AND NOTATIONS xi

int(X) interior of a given set X
a+X Minkowski sum of a vector a and a set X in Rn

Derivatives
∇f or ∇xf gradient vector of a function f (w.r.t. x)
g′(x) Jacobian matrix of a vector function g at x
∇2f or ∇2

xf Hessian matrix of a function f (w.r.t. x)
∂f
∂x first order partial derivative of f w.r.t. x
∂2f
∂x2 or ∂2f

∂x∂y second order partial derivative of f w.r.t. x (and y)
Ck(X) set of k-times continuously differentiable functions (k ≥ 0)

Chapter 1

Introduction

Many practical problems in science, engineering and business require the solution
of an optimization problem [11, 25, 56]. This problem can be obtained directly
from a mathematical formulation of a practical problem or results as an auxiliary
problem from other solution methods. In some standard classes of convex
optimization problems such as linear, quadratic and conic programming, theory
and methods have been well-developed and numerous applications are carried
out. In contrast to this, solving a nonconvex optimization problem is still
a big challenge. It was shown theoretically that the problem of finding a
global solution of a general optimization problem is unsolvable [142]. Several
attempts in theory and methodology have been made for more than sixty years
and resulted in many areas of engineering and sciences [66, 69, 148]. However,
solving efficiently a nonconvex optimization problem is a crucial requirement in
several applications nowadays [30, 142, 148].

1.1 Motivation and objectives

The motivation of the thesis is the observation that many optimization problems
in practice possess certain structures such as convexity, sparsity and separability
which can be exploited efficiently in numerical solution methods. These
structures may originate naturally from the modeling stage of the problem
or may appear later due to its simplification, reformulation or relaxation. In
practice, the sparsity structure of problems is usually exploited at a lower-level
of a solution method such as at the linear algebra level. In this research, we
focus our consideration on two specific structures of the optimization problems,

1

2 INTRODUCTION

namely convexity and separability. Several examples have shown that exploiting
properly the structures of problems lead to an efficient solution method, see e.g.
[47, 200, 209, 211].

Convexity. Convexity plays a central role in optimization problems and solving
a convex optimization problem is more efficient and reliable than a nonconvex
one. If the convexity appears explicitly in the optimization problems such as
in linear programming and quadratic programming, then it can be exploited
efficiently in numerical solution methods, e.g. by interior point methods [146,
213]. However, we often meet optimization problems which contain implicitly a
convex structure. This convexity may arise as a natural source in the problem,
by reformulating the original problem, by convexifying some components of the
problem or by robustifying the original problem under uncertainties. Several
methods based on exploiting implicitly convex structures have been developed
recently and resulting in many applications, see e.g. [11, 12, 81, 102, 200,
209]. Unfortunately, many highly important practical problems are nonconvex.
Nevertheless, they still possess convex substructures as we can see in the
following examples.

Example 1.1.1.([51]) An approximate robust counterpart formulation of
an optimization problem under uncertain parameters results in the following
problem:

min
w̄,u,D

f0(w, u) +
∥∥∥DT ∂f0(w̄,u)

∂w

T
∥∥∥

2

s.t. fi(w̄, u) +
∥∥∥DT ∂fi(w̄,u)

∂w

T
∥∥∥

2
≤ 0, i = 1, . . . , nf ,

g(w̄, u, ξ̄) = 0,
∂g(w̄,u,ξ̄)

∂w D + ∂g(w̄,u,ξ̄)
∂ξ = 0,

(1.1.1)

where fi and g are smooth and ξ ∈ Γ :=
{
η |

∥∥η − ξ̄∥∥ ≤ 1
}

is the set of
uncertainties. In fact, problem (1.1.1) is obtained by linearizing the robust
counterpart problem of an optimization problem. Here, D is a sensitivity matrix
which is defined as D := −

(
∂g
∂w (w̄, u, ξ̄)

)−1
∂g
∂ξ (w̄, u, ξ̄). This matrix is also

optimization variables of (1.1.1). Problem (1.1.1) is in general nonconvex but
contains second order cone structures. ♦

Example 1.1.2. The second example that we are interested in is an
optimization problem with a bilinear matrix inequality (BMI) constraint. This
problem originates from the problem of finding a static output feedback control
law u = Fy to stabilize the linear time invariant system ẋ = Ax + Bu and
y = Cx. By employing Lyapunov’s theory, this problem leads to the following

MOTIVATION AND OBJECTIVES 3

formulation:

min
γ,F,P

γ

s.t. P � 0, (A+BFC)TP + P (A+BFC) + 2γP ≺ 0,
(1.1.2)

where A,B,C are given. This problem is indeed nonconvex and also known as
an abscissa spectral problem [205]. However, if we either fix variables F and
γ or variable P then the resulting problem becomes convex and is in fact a
standard semidefinite program. More general, many other problems such as
sparse linear static output feedback controller design, pseudo-spectral abscissa
optimization, H2, H∞ and mixed H2/H∞ control can be cast into optimization
problems with BMI constraints [118, 191]. ♦

A natural idea to solve a nonconvex optimization problem is to approximate
it by convex ones. Nevertheless, there are still several cornerstone questions
that need to be tackled. For instance, how can we convexify the nonconvex
parts? What is the relation between the convex approximation problem and
the original one? In this research we focus on developing numerical solution
methods for solving certain classes of nonconvex optimization problems.

In the framework of nonlinear model predictive control (NMPC) and moving
horizon estimation (MHE) [21, 54, 68, 129, 158], the underlying optimal control
problems usually depend on parameters such as initial states. Treating these
problems by taking into account the parameter dependence are crucial for those
applications. The theory related to parametric optimization has been intensively
studied in several monographs such as [28, 66, 85, 112, 162]. A main feature
of NMPC and MHE is the time limitation which any numerical optimization
method must satisfy. One method which fits very well this requirement is the
real-time iteration developed in [50, 53, 55]. The approach employs the fact that
the solutions of the optimization problem at two successive parameter values
are close to each other. This allows one to derive an approximate solution of
the optimization problems by performing only one iteration of a Newton-type
optimization algorithm. A similar approach based on continuation methods
can be found in [149]. Motivated from these works, we study in this thesis a
generalized framework of the real-time iteration scheme where we can handle
both the inexactness of the derivative information and the generalized convexity
of the constraints.

Without parameters, theory and methods for solving nonlinear optimization
problems have been well developed and can be found in many numerical
optimization monographs, e.g. [67, 69, 148]. Two conventional methods
for solving nonparametric optimization problems are sequential quadratic
programming (SQP) and interior point methods (IP). Roughly speaking, the
SQP algorithms solve the nonlinear optimization problem by employing the

4 INTRODUCTION

solutions of a sequence of quadratic programming subproblems, while, in one
view, the nonlinear IP methods treat the problem via a sequence of linear
equation systems obtained by linearizing the KKT system of the corresponding
barrier problem. Both approaches require that all the nonlinear constraints
of the original problem are linearized or approximately linearized. If the
problem possesses a convex structure such as second order cone or semidefinite
cone constraints then these approaches do not adequately capture the specific
structures of the problem.

Separability. In addition to convexity, separable structures are also important
for developing numerical solution methods in optimization. The separability
of the problems arises naturally in several applications such as optimization in
networks, machine learning, multistage stochastic optimization and distributed
model predictive control. It also results from other solution methods such as
direct multiple shooting methods in optimal control. Let us give some examples
to illustrate our motivation.

Example 1.1.3. The following example covers two well-studied problems in
networks, namely resource allocation and network utility maximization problems:

min
x∈Rn

∑M
i=1 fi(xi),

s.t.
∑M
i=1 xi ≤ c,

0 ≤ xi ≤ ai, i = 1, . . . ,M,

(1.1.3)

where fi : Rni → R represents a utility or a cost function, ai is the vector of
capacities of each agent for i = 1, . . . ,M and c is the vector of total capacities.
This problem is indeed separable and usually large-scale when the number M
of agents or nodes in the network increases. ♦

Example 1.1.4. The second example is an optimization problem arising in
machine learning. This problem is known as a sparse recovery formulation:

min
x

‖x‖p
s.t. Ax = y,

(1.1.4)

where A ∈ Rm×n and y ∈ Rm are given recover operator and measurements,
respectively, and p ∈ [0, 1], where ‖x‖p := (

∑n
i=1 |xi|

p)1/p if p > 0 and ‖x‖p :=
{i : xi 6= 0} the cardinality of x if p = 0. This problem is usually nonconvex
and turns out to be convex if p = 1. ♦

A common approach to tackle the separable structure in optimization is
decomposition [17]. This approach decomposes the original optimization problem
into several subproblems which can be solved in a parallel or distributed manner.
If these problems possess a fixed sparsity structure then they may efficiently
be solved by optimization solvers which make use of exploiting sparsity [19].

THREE MAIN CONCEPTS 5

Here, we are more interested in the opposite case where the considered problem
is not suitable for general-purpose solvers or possesses a dynamic structure
where we can easily add or remove components without changing the whole
implementation of the algorithm. We are particularly interested in the case
when the subproblem formed by each component can be solved easily in a closed
form. As the second major aim of the thesis, we develop several decomposition
methods for solving separable optimization problems both in the convex and
nonconvex cases which can be implemented in a parallel or distributed way.
Note that separable convex optimization problems have extensively been studied
in the literature, see e.g. [17, 45, 61, 136] both in general setting and particular
applications. Nevertheless, the existing methods developed in this direction
remains encountering several disadvantages such as slow convergence rate or
limited in a specific class of problems. Our aim is to develop some numerical
optimization methods for solving separable optimization problems which exploit
the advantages of the existing methods and employing recent development in
convex optimization [11, 30, 142].

1.2 Three main concepts

The methodology that we use in this thesis is based on several concepts and
techniques. The three concepts which are particularly important are convexity,
path-following and decomposition, and have been used throughout the thesis.
Let us briefly present them here.

Convexity

Convexity is not only a central concept in optimization but also in many other
areas of applied mathematics. Thanks to convex analysis [161] the understanding
of convex optimization is more thorough than of nonconvex optimization. It
is also a powerful tool for studying nonconvex optimization as well as related
problems such as optimal control and variational inequalities. Moreover, all the
solutions of a convex problem are global. Several subclasses of convex problems
with explicit structures such as conic programming and geometric programming
can be solved efficiently by means of polynomial time algorithms such as
interior point methods [11, 146, 163]. These problem classes become standard
in optimization. Besides, thanks to the development of disciplined convex
programming [81, 124], several nonstandard convex optimization problems
have been solved efficiently by a reformulation to the standard ones. The
disciplined convex programming approach is a methodology to construct convex
optimization models by enforcing a set of basic conventions on the models. This

6 INTRODUCTION

set of conventions allows one to analyze, manipulate and transform automatically
a general convex optimization model into simplified forms that can be tackled
by standard optimization solvers. Alternatively to the disciplined convex
optimization approach, a structural optimization approach has also been well-
studied [142]. By properly exploiting the structures of the problem, one can
design better methods for solving convex programming problems.

Recently, many convex optimization problems arising from statistics, image
and signal processing and machine learning have attracted interest [10, 30] and
demand new approaches to solve them. One active research direction is based
on gradient and fast gradient methods originally developed by Nesterov [137].
Several variants of the fast gradient method have been developed rendering an
exponential increase both in theory and applications of this direction, see e.g.
[10, 49, 134, 141, 145].

In the nonconvex case, convex optimization approaches are also main tools to
design solution methods for solving nonconvex optimization problems. Several
techniques have been used to exploit convex structure such as nonlinear
transformation, relaxation, dualization and convexification [200, 209]. Although
many techniques have been proposed based on exploiting convexity of the
problems, it is still worthwhile to develop more efficient and reliable methods
for solving nonconvex problems by making use of a state-of-the-art convex
optimization.

Path-following scheme

Path-following method is often also referred to as a continuation method or
a homotopy method and is a technique to treat problems which depend on
parameters, see e.g. [4] for a good review. A solution of those problems is
usually represented as a mapping of the parameters and generates a trajectory or
a path in the parameter space. Classical path-following methods for parametric
optimization solve each optimization problem obtained at a given value of
the parameter to generate an approximate solution at such a point and then
update the parameters for the next step. Since solving the optimization problem
until complete convergence is usually time consuming, these approaches are
rather limited in real-time applications. Besides, in many applications, we
do not require a highly accurate solution of the optimization problem at the
intermediate values of the parameters. Therefore, we can solve this optimization
problem up to a certain accuracy and then perform the next iteration. This
idea was implemented in path-following interior-point methods which, at each
value of the penalty parameter, only perform one Newton-type step of the whole

THREE MAIN CONCEPTS 7

optimization procedure and then update the penalty parameter for the next
iteration, see e.g. [79, 130, 142, 146, 213].

In the framework of nonlinear model predictive control, the idea of path-following
methods has proved to be efficient. This method was proposed by Diehl et al
[50, 53] and is called real-time iteration. The real-time iteration scheme solves
the underlying optimization problems at a given sampling time by performing
only one iteration of an SQP-type or a Gauss-Newton-type procedure. This
means that only one QP problem is solved at each sampling time. By employing
the tools of sensitivity analysis, it was proved under standard assumptions
that the solution of the QP problem provides a good approximation to the
solution of the underlying optimization problems to maintain the stability of
the tracking errors between approximate solutions and the true ones provided
that the sampling time is sufficiently small. A similar approach was proposed
in [149]. Further extensions can be found in [217].

Decomposition

Optimization problems that have a fixed sparsity structure or are of small and
medium size can be solved by standard centralized optimization algorithms
[19, 78]. If the problems are large-scale and possess a dynamic structure due
to the variation of the topology or have a distributed data location then
decomposition approaches would be an appropriate choice. Roughly speaking,
decomposition approaches divide the given optimization problem into several
subproblems which can be solved more easily than the original one. However,
this approach only works if the given problem possesses certain structures such
as separability. Several decomposition methods have been proposed to solve
large-scale convex optimization problems such as Dantzig-Wolfe decomposition,
Benders’ decomposition and Fenchel’s dual decomposition [45, 75, 89, 219] to just
name a few. If the problem is separable and convex then classical Lagrangian
dual decomposition can be used. The main assumption in this approach is
that strong duality holds. Unfortunately, this requirement is not fulfilled in the
nonconvex case. Several attempts have been proposed to solve a nonconvex
problem by applying augmented Lagrangian techniques, Jacobi and Gauss-
Seidel iteration schemes [17, 164]. The approach in this thesis is to combine
Lagrangian dual decomposition, smoothing techniques and a path-following
method to design competitive algorithms for solving separable optimization
problems.

8 INTRODUCTION

1.3 Contributions of the thesis and overview

This thesis will focus on developing numerical optimization methods for some
classes of nonlinear optimization problems, namely parametric nonconvex
optimization, nonconvex semidefinite programming and separable convex and
nonconvex optimization problems. These classes of problems cover many
practical problems in different fields and subfields of engineering and science
such as nonlinear model predictive control, robust optimization, robust control,
optimization in networks, machine learning, multistage stochastic optimization
and distributed model predictive control. The thesis is divided into two parts,
namely Sequential Convex Programming (SCP) and Decomposition in Separable
Optimization.

Sequential convex programming

The aim of Part I is to develop local optimization methods for solving some
classes of nonconvex programming problems based on exploiting the convexity
of the problems. The contribution of this part is presented in four chapters that
cover the following two areas:

Adjoint-based predictor-corrector sequential convex programming. We
develop a local optimization method called adjoint-based predictor-corrector se-
quential convex programming (APCSCP) for parametric nonconvex optimization
in Chapter 2. The algorithm is a combination of three ingredients consisting of
sequential convex programming (SCP), predictor-corrector path-following and
adjoint based optimization techniques. In other words, it solves a sequence of
nonconvex optimization problems by performing only one iteration of the whole
optimization procedure, namely sequential convex programming (SCP) for each
problem and makes use of inexact Jacobian information of the nonlinear equality
constraints. The stability of the tracking errors between the approximate KKT
points generated by the algorithm and the true KKT points of the problem
is proved under standard assumptions including strong regularity [160]. This
algorithm is suitable for nonlinear model predictive control applications. If
the parameter is absent then the algorithm coincides with a local optimization
method for solving nonlinear nonconvex programming problems which we call
sequential convex programming (SCP) [188]. We show that the local convergence
of this algorithm is linear. Both algorithms are tested through two numerical
examples in Chapter 3. The first example is an NMPC problem of a hydro
power plant with 259 states and 10 controls, while the second example is a time
optimal trajectory planning problem of a car motion. The results presented

CONTRIBUTIONS OF THE THESIS AND OVERVIEW 9

in Chapters 2 and 3 have been published in the journal paper [196] and the
conference papers and book chapters [133, 187, 188, 198, 199].

Generalized inner convex approximation algorithms. We study a generalized
inner convex approximation method for solving a class of nonconvex semidefinite
programming problems in Chapter 4. As a variant of this method, a new
algorithm called generalized convex-concave decomposition is obtained. The idea
is to decompose a nonconvex matrix mapping in semidefinite constraints as a
sum of a convex matrix-valued mapping and a concave matrix-valued mapping.
Then the concave part is linearized to obtain a convex programming problem.
An iterative method is derived to solve the given problem by exploiting standard
semidefinite programming techniques. The convergence of these algorithms
is proved. Applications of both algorithms to static state/output feedback
controller design are shown in Chapter 5. We show that these algorithms can
be applied to solve many optimization problems arising in static state/output
feedback controller design including spectral abscissa, H2-control, H∞-control
and mixed H2/H∞-control problems. Some heuristic procedures are also
provided to compute the starting point for the algorithms. Numerical results
and comparisons are made by using the data from the COMPLeib library [119].
The results presented in Chapters 4 and 5 have been published in the journal
paper [191] and the conference paper [192].

Decomposition in separable optimization

The aim of Part II is to develop efficient numerical algorithms for solving
separable optimization problems based on decomposition techniques. First,
we focus our study on separable convex optimization problems and dual
decomposition methods for solving them. Then we extend the results to
separable nonconvex optimization problems as a special case of the SCP
approach. The contribution of this part consists of five chapters that cover the
following areas:

Smoothing via proximity functions and first order decomposition methods.
After reviewing some related existing decomposition methods in convex and
nonconvex optimization problems, we briefly recall the classical Lagrangian dual
decomposition method and some concepts related to parallel and distributed
algorithms and performance profiles in Chapter 6. In Chapter 7, we first present
the smoothing technique based on proximity functions in [145] and the excessive
gap technique introduced in [140] in the framework of dual decomposition. Then,
we propose two new decomposition algorithms for solving separable convex

10 INTRODUCTION

optimization problems. These algorithms can be classified as the first-order
methods using the optimal scheme in the sense of Nesterov [142]. Two different
variants of these algorithms are considered and their convergence second order
sufficient conditionrate is established. As a special case, the second algorithm
is specialized to the strongly convex case where we obtain a new variant which
has the convergence rate O(1/k2), where k is the iteration counter. Extensions
to the inexact case are also investigated, where we allow one to solve the
primal subproblems formed from each component of the problem inexactly.
Theoretical comparison is made and numerical tests are implemented to verify
the performance of the algorithms and to compare them. The results obtained
in Chapter 7 have contributed the main content to the two journal papers [193,
197].

Smoothing via barrier functions and path-following decomposition methods.
In Chapter 8, we first present a smoothing technique based on self-concordant
barrier functions. In addition to the related existing results in the literature, we
provide some new bounds between the smoothed dual functions and the original
dual function. Then, we propose a path-following gradient decomposition
method and a fast gradient decomposition method for solving separable convex
optimization problems. The convergence of these algorithms is analyzed and the
local convergence rate is estimated. Numerical examples are also implemented
to verify the theoretical development. The results presented in Chapter 8 have
contributed the main content to the journal paper [194].

In Chapter 9, we present an inexact-perturbed path-following decomposition
algorithm. In this algorithm, the primal convex subproblems formed from each
component of the problem are assumed to be solved inexactly. This leads to an
inexactness in the gradient vectors and the Hessian matrices of the smoothed
dual function. An inexact-perturbed path-following method is proposed to solve
the smoothed dual problem. Under appropriate choices of the accuracy levels,
we prove that the worst-complexity bound of the method remains the same as in
the exact case scaled by a constant. We also show that the exact path-following
decomposition methods studied in [113, 131, 133, 171, 218] are special cases of
this algorithm. The algorithms developed in this chapter are also verified via
numerical examples. The results presented in Chapter 9 have been published in
the journal paper [195].

Application to separable nonconvex optimization. In Chapter 10, we present
an application of the previous approaches to solve separable nonconvex
optimization problems. The idea is to combine the SCP approach in Part
I and the decomposition in separable convex optimization problems to obtain a

CONTRIBUTIONS OF THE THESIS AND OVERVIEW 11

two-level optimization algorithm for solving separable nonconvex optimization
problems. More precisely, in the first level, we exploit the idea in [141, 143, 189]
to build a new variant of the SCP algorithm proposed in Chapter 2 for solving
the given nonconvex problem. Then, in the second level, the subproblems
in this SCP variant are strongly convex and can be solved by applying the
decomposition framework studied in the previous chapters. Numerical tests are
also implemented to verify the proposed algorithm.

The interdependence of the chapters in this thesis is shown in Figure 1.1.

Ch
ap

te
r 2

Pr

ed
ict

or
-C

or
re

cto
r

Se
qu

en
tia

l C
on

ve
x

Pr
og

ra
m

m
ing

Ch
ap

te
r 4

In

ne
r C

on
ve

x A
pp

ro
xim

at
ion

M

et
ho

ds
 fo

r N
on

co
nv

ex
 S

DP

Ch
ap

te
r 5

BM

I O
pt

im
iza

tio
n

in
Ro

bu
st

Co
nt

ro
lle

r D
es

ign

Ch
ap

te
r 3

SC

P
Ap

pli
ca

tio
ns

 in

Op
tim

al
Co

nt
ro

l

In
tro

du
ct

io
n

Ch
ap

te
r 8

Pa

th
-F

oll
ow

ing

Gr
ad

ien
t

De
co

m
po

sit
ion

Al

go
rit

hm
s

Ch
ap

te
r 6

Ex

ist
ing

 A
pp

ro
ac

he
s i

n
Se

pa
ra

ble

Op
tim

iza
tio

n

Ch
ap

te
r 1

0
Ap

pli
ca

tio
n

to
 S

ep
ar

ab
le

No
nc

on
ve

x O
pt

im
iza

tio
n

Ch
ap

te
r 9

In

ex
ac

t P
er

tu
rb

ed

Pa
th

-F
oll

ow
ing

De

co
m

po
sit

ion

Ch
ap

te
r 7

De

co
m

po
sit

ion
 vi

a
th

e
Ex

ce
ss

ive
 G

ap

Te
ch

niq
ue

Ap
pe

nd
ix

Th
e

Pr
oo

f o
f T

ec
hn

ica
l

St
at

em
en

ts

Co
nc

lu
sio

n

Figure 1.1: The structure of the thesis

Part I

Sequential Convex
Programming

13

Chapter 2

Predictor-corrector sequential
convex programming

2.1 Problem statement and contribution

We are interested in developing an optimization method for calculating the
approximate solutions of a sequence of nonlinear optimization problem instances
of the following parametric nonconvex optimization problem:

min
x∈Rn

f(x)
s.t. g(x) +Mξ = 0,

x ∈ Ω,
P(ξ)

where f : Rn → R is convex, g : Rn → Rm is nonlinear, Ω ⊆ Rn is a
nonempty, closed convex set, and the parameter ξ belongs to a given subset
P ⊆ Rp. Matrix M ∈ Rm×p plays the role of embedding the parameter ξ into
the equality constraints in a linear way. Throughout this chapter, f and g are
assumed to be differentiable on their domain.

The problem formulation P(ξ) covers many (parametric) nonlinear programming
problems in practice such as standard nonlinear programs, nonlinear second order
cone programs, and nonlinear semidefinite programs [110, 148, 179]. Moreover,
the theory and methods for parametric optimization have been extensively
studied in many research papers and monographs, see, e.g. [29, 74, 160, 162].

This chapter deals with the efficient calculation of approximate solutions to a
sequence of problems of the form P(ξ), where the parameter ξ is slowly varying.

15

16 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

In other words, for a sequence {ξk}k≥0 such that ‖ξk+1 − ξk‖ is small, we want
to solve the problems P(ξk) in an efficient way without requiring more accuracy
than needed in the result.

In practice, sequences of problems of the form P(ξ) arise in the framework of
real-time optimization, moving horizon estimation, online data assimilation as
well as in nonlinear model predictive control (NMPC). A practical obstacle
in these applications is the time limitation imposed on solving the underlying
optimization problem for each value of the parameter. Instead of solving
completely a nonlinear program at each sample time [20, 21, 26, 96], several
online algorithms approximately solve the underlying nonlinear optimization
problem by performing only one iteration of exact Newton, sequential quadratic
programming (SQP), Gauss-Newton or interior point methods [53, 149, 217]. In
[53, 149] the authors only considered the algorithms in the framework of SQP
methods. This approach has been proved to be efficient in practice and is widely
used in many applications [50]. Recently, Zavala and Anitescu [217] proposed
an inexact Newton-type method for solving online optimization problems based
on the framework of generalized equations [29, 160].

Other related work considers practical problems which possess general convexity
structure such as second order cone and semidefinite cone constraints, nonsmooth
convexity [65, 179]. In these applications, standard optimization methods may
not perform satisfactorily. Many algorithms for nonlinear second order cone
and nonlinear semidefinite programming have recently been proposed and
found many applications in robust optimal control, experimental design, and
topology optimization, see, e.g. [8, 65, 72, 111, 179]. These approaches can be
considered as generalizations of the SQP method. Although solving semidefinite
programming problems is in general time consuming due to matrix operations,
in some practical applications, the problems may possess a few expensive
constraints such as second order cone or semidefinite cone constraints. In this
case handling these constraints directly in the algorithm may be more efficient
than transforming them into scalar constraints.

Contribution of Chapter 2. The contribution of this chapter is as follows:

a) We start this chapter by proposing a generic framework called the adjoint-
based predictor-corrector sequential convex programming (APCSCP)
method for solving parametric optimization problems of the form P(ξ).
The algorithm is specially suited for solving nonlinear model predictive
control problems where the evaluations of the derivatives are time
consuming. For example, it can show advantages with respect to standard
techniques when applied to problems in which the number of state variables
in the dynamic system is much larger than the number of control variables.

THREE INGREDIENTS OF THE ALGORITHM 17

b) We prove the stability of the tracking error between the approximate
solutions and the true ones for this algorithm (Theorem 2.4.2).

c) In the second part of this chapter the theory is specialized to the non-
parametric case where a single optimization problem is solved. The local
convergence of this variant is also obtained.

The APCSCP method develop in this chapter can be considered as a combination
of three techniques, namely sequential convex programming, predictor-corrector
path-following and adjoint-based optimization. SCP allows the algorithm to
handle general convex constraints while the adjoint-based methods reduce
significantly the computational time for evaluating the derivatives of the
constraint functionals.

Outline of Chapter 2. The outline of this chapter is as follows. In Section
2.2 we briefly describe three ingredients that we use to develop the algorithms.
Section 2.3 presents a generic framework of the adjoint-based predictor-corrector
SCP algorithm (APCSCP). Section 2.4 proves the local contraction estimate for
APCSCP and the stability of the approximation errors. Section 2.5 considers
an adjoint-based SCP algorithm for solving nonlinear programming problems as
a special case.

2.2 Three ingredients of the algorithm

APCSCP is based on three main ideas: sequential convex programming,
predictor-corrector path-following and adjoint-based optimization. We briefly
explain these methods in the following.

Sequential convex programming

The sequential convex programming (SCP) method is a local nonconvex
optimization technique. SCP solves a sequence of convex approximations of the
original problem by convexifying only the nonconvex parts and preserving the
structures that can efficiently be exploited by convex optimization techniques [30,
128, 142]. Note that this method is different from SQP methods where quadratic
programs are used as approximations of the problem. The SCP approach is
useful when the problem possesses general convex structures such as conic
constraints, a cost function depending on matrix variables or convex constraints
resulting from a low level problem in multi-level settings [8, 51, 179]. Due to

18 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

the complexity of these structures, standard optimization techniques such as
SQP and Gauss-Newton-type methods may not be convenient to apply. In the
context of nonlinear conic programming, SCP approaches have been proposed
under the names sequential semidefinite programming (SSDP) or SQP-type
methods [44, 65, 72, 110, 111, 179]. It has been shown in [57] that the superlinear
convergence is lost if the linear semidefinite programming subproblems in the
SSDP algorithm are convexified. In [123] the authors considered a nonlinear
program in the framework of a composite minimization problem, where the inner
function is linearized to obtain a convex subproblem which is made strongly
convex by adding a quadratic proximal term.

In this chapter, following the work in [65, 71, 133, 188, 197], we apply the SCP
approach to solve problem P(ξ). The nonconvex constraint g(x) +Mξ = 0 is
linearized at each iteration to obtain a convex approximation. The resulting
subproblems can be solved by exploiting convex optimization techniques.

We would like to note that the term “sequential convex programming” was
also often used in structural optimization but with a different view, see, e.g.
[70, 221]. The cited papers are related to the method of moving asymptotes
introduced by Svanberg [182].

Predictor-corrector path-following method

In order to illustrate the idea of the predictor-corrector path-following method
[48, 217] and to distinguish it from the other “predictor-corrector” concepts,
e.g. the well-known predictor-corrector interior point method proposed by
Mehrotra in [130], we summarize the concept of “predictor-corrector path-
following methods” in the case Ω ≡ Rn as follows.

The KKT system of problem P(ξ) can be written as F (z; ξ) = 0, where z = (x, y)
is its primal-dual variable. The solution z∗(ξ) that satisfies the KKT condition
for a given ξ is in general a smooth map. By applying the implicit function
theorem, the derivative of z∗(·) is expressed as:

∂z∗

∂ξ
(ξ) = −

[
∂F

∂z
(z∗(ξ); ξ)

]−1
∂F

∂ξ
(z∗(ξ); ξ).

In the parametric optimization context, we might have solved a problem at
the parameter value ξ̄ with the solution z̄ = z∗(ξ̄) and want to solve the next
problem for a new parameter value ξ̂. The tangential predictor ẑ for this new
solution z∗(ξ̂) is given by:

ẑ = z∗(ξ̄) + ∂z∗

∂ξ
(ξ̄)(ξ̂ − ξ̄) = z∗(ξ̄)−

[
∂F

∂z
(z∗(ξ̄); ξ̄)

]−1
∂F

∂ξ̄
(z∗(ξ̄); ξ̄)(ξ̂ − ξ̄).

THREE INGREDIENTS OF THE ALGORITHM 19

Note the similarity with one step of a Newton method. In fact, a combination
of the tangential predictor and the corrector due to a Newton method proves to
be useful in the case that z̄ was not the exact solution of F (z; ξ̄) = 0, but only
an approximation. In this case, linearization at (z̄, ξ̄) yields a formula that one
step of a predictor-corrector path-following method needs to satisfy:

F (z̄; ξ̄) + ∂F

∂ξ
(z̄; ξ̄)(ξ̂ − ξ̄) + ∂F

∂z
(z̄; ξ̄)(ẑ − z̄) = 0. (2.2.1)

Written explicitly, it delivers the solution guess ẑ for the next value ξ̂ as:

ẑ = z̄−
[
∂F

∂z
(z̄; ξ̄)

]−1
∂F

∂ξ
(z̄; ξ̄)(ξ̂ − ξ̄)︸ ︷︷ ︸

=∆zpredictor

−
[
∂F

∂z
(z̄; ξ̄)

]−1
F (z̄; ξ̄)︸ ︷︷ ︸

=∆zcorrector

. (2.2.2)

Note that when the parameter enters linearly into F , we can write:

∂F

∂ξ
(z̄; ξ̄)(ξ̂ − ξ̄) = F (z̄; ξ̂)− F (z̄; ξ̄) and ∂F

∂z
(z̄; ξ̄) = ∂F

∂z
(z̄).

Thus, equation (2.2.1) reduces to:

F (z̄; ξ̂) + ∂F

∂z
(z̄)(ẑ − z̄) = 0. (2.2.3)

It follows that the predictor-corrector step can be easily obtained by just
applying one standard Newton step to the new problem P(ξ̂) initialized at the
past solution guess z̄, if we employ the parameter embedding in the problem
formulation [50].

Based on the above analysis, the predictor-corrector path-following method only
performs the first iteration of the exact Newton method for each new problem.
In this chapter, by applying the generalized equation framework [160, 162],
we generalize this idea to the case where more general convex constraints are
considered. When the parameter does not enter linearly into the problem, we
can always reformulate this problem as P(ξ) by using intermediate variables.
In this case, the derivatives with respect to these intermediate variables contain
the information of the predictor term. Finally, we notice that the real-time
iteration scheme proposed in [53] can be considered as a variant of the above
predictor-corrector method in the SQP context.

Adjoint-based optimization method

From a practical point of view, most of the time spent on solving optimization
problems resulting from simulation-based methods is needed to evaluate

20 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

the functions and their derivatives [27]. Adjoint-based methods rely on the
observation that it is not necessary to use exact Jacobian matrices of the
constraints. Moreover, in some applications, the time needed to evaluate all the
derivatives of the functions exceeds the time available to compute the solution of
the lower level convex optimization problems. The adjoint-based Newton-type
methods in [58, 84, 167] can work with an inexact Jacobian matrix and only
require an exact evaluation of the Lagrange gradient using adjoint derivatives
to form the approximate optimization subproblems in the algorithm. This
technique still allows the algorithm to converge to the exact solutions but can
save valuable time in the online implementation of the algorithm.

A tutorial example

The idea of the APCSCP method is illustrated in the following simple example.

Example 2.2.1.(Tutorial example) Let us consider a simple nonconvex
parametric optimization problem:

min
x∈R2

−x1

s.t. x2
1 + 2x2 + 2− 4ξ = 0,
x2

1 − x2
2 + 1 ≤ 0, x ≥ 0,

(2.2.4)

where ξ ∈ P := {ξ ∈ R : ξ ≥ 1.2} is a parameter. After a few calculations,
we can show that x∗ξ = (2

√
ξ −
√
ξ, 2
√
ξ − 1)T is a stationary point of problem

(2.2.4) which is also the unique global optimum. It is clear that problem (2.2.4)
satisfies the strong second order sufficient condition (SSOSC) at x∗ξ .

Note that the constraint x2
1 − x2

2 + 1 ≤ 0 can be rewritten as a second order
cone constraint

∥∥(x1, 1)T
∥∥

2 ≤ x2 under the condition x2 ≥ 0. Let us define
g(x) := x2

1 + 2x2 + 2, M := −4 and Ω := {x ∈ R2 |
∥∥(x1, 1)T

∥∥
2 ≤ x2, x ≥ 0}.

Then, problem (2.2.4) can be cast into the form of P(ξ). The aim is to
approximately solve problem (2.2.4) at each given value ξk of the parameter ξ.
Instead of solving the nonlinear optimization problem at each ξk until complete
convergence, APCSCP only performs the first step of the SCP algorithm to
obtain an approximate solution xk at ξk. Notice that the convex subproblem
needed to be solved at each ξk in the APCSCP method is:

min
x

−x1

s.t. 2xk1x1 + 2x2 − (xk1)2 + 2− 4ξ = 0,∥∥(x1, 1)T
∥∥ ≤ x2, x ≥ 0.

(2.2.5)

We compare this method with other known real-time iteration algorithms. The
first one is the real-time iteration with an exact SQP method and the second

THREE INGREDIENTS OF THE ALGORITHM 21

0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

 x
1

Exact−SQP

x
2

0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

 x
1

Projected−SQP
x

2

0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

 x
1

SCP

x
2

Figure 2.1: The trajectory of three methods (k = 0, · · · , 9), (� is x∗(ξk) and ◦
is xk).

2 4 6 8 10

0

0.05

0.1

0.15

0.2

Exact−SQP
2 4 6 8 10

0

0.02

0.04

0.06

0.08

Projected−SQP
2 4 6 8 10

0

0.02

0.04

0.06

SCP

||x

k
−x*(ξ

k
)||

SOC const. viol.

Figure 2.2: The tracking error and the cone constraint violation of three methods
(k = 0, · · · , 9).

algorithm is the real-time iteration with an SQP method using a projected
Hessian [53, 106]. In the second algorithm, the Hessian matrix of the Lagrange
function is projected onto the cone of symmetric positive semidefinite matrices
to obtain a convex quadratic programming subproblem.

Figures 2.1 and 2.2 illustrate the performance of three methods when ξk =
1.2+k∆ξk for k = 0, . . . , 9 and ∆ξk = 0.25. Figure 2.1 presents the approximate
solution trajectories given by three methods, while Figure 2.2 shows the tracking
errors and the cone constraint violations of those methods. The initial point x0

of three methods is chosen at the true solution of P(ξ0). We can see that the
performance of the exact SQP and the SQP using projected Hessian is quite
similar. In particular, the second order cone constraint

∥∥(x1, 1)T
∥∥

2 ≤ x2 is
violated in both methods. The SCP method preserves the feasibility and follows
better the exact solution trajectory. Note that the subproblem in the exact
SQP method is a nonconvex quadratic program, while it is a convex quadratic
program in the projected SQP case and is a second order cone constrained
program (2.2.5) in the SCP method. ♦

22 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

2.3 Adjoint-based predictor-corrector SCP algo-
rithm

In this section, we present a generic algorithmic framework for solving the
parametric optimization problem P(ξ). Traditionally, at each sample ξk of
parameter ξ, a nonlinear program P(ξk) is solved to get a completely converged
solution z̄(ξk). Exploiting the real-time iteration idea [50, 53], in our algorithm
below, only one convex subproblem is solved to get an approximated solution
zk at ξk to z̄(ξk).

Let us assume that the convexity in the objective function and the constraint
x ∈ Ω can be efficiently exploited by convex optimization techniques. We
generate our convex subproblem by approximating the nonlinear constraint
g(x) +Mξ = 0, adding a correction term to correct the difference between the
approximate Jacobian of g and its true Jacobian g′ and adding a regularization
term to capture the curvature of the constraints. More precisely, the convex
subproblem is generated as follows. Suppose that zk := (xk, yk) ∈ Ω×Rm is a
given KKT point of P(ξk) (more details can be found in the next section), Ak
is a given m× n matrix and Hk ∈ Sn+. We consider the following parametric
convex programming subproblem:

min
x∈Rn

{
f(x) + (sk)T (x− xk) + 1

2 (x− xk)THk(x− xk)
}

s.t. Ak(x− xk) + g(xk) +Mξ = 0,
x ∈ Ω,

P(zk, Ak, Hk; ξ)

where sk := s(zk, Ak) =
(
g′(xk)−Ak

)T
yk. Matrix Ak is an approximation to

g′(xk) at xk, Hk is a regularization or an approximation to ∇2
xL(z̄k), where L

is the Lagrange function of P(ξ) to be defined in Section 2.4. Vector sk can
be considered as a correction term of the inconsistency between Ak and g′(xk).
Vector yk is referred to as the Lagrange multiplier. Since f and Ω are convex
and Hk is symmetric positive semidefinite, the subproblem P(zk, Ak, Hk; ξ) is
convex. Here, zk, Ak and Hk are considered as parameters.
Remark 2.3.1. Note that computing the term g′(xk)T yk of the correction
vector sk does not require the whole Jacobian matrix g′(xk), which is usually
time consuming to evaluate.

When implementing the algorithm, the evaluation of the directional derivatives
ηk := g′(xk)T yk can be done by the reverse mode (or adjoint mode) of automatic
differentiation (AD). By using this technique, we can evaluate an adjoint
directional derivative vector of the form g′(xk)T yk without evaluating the whole
Jacobian matrix g′(xk) of the vector function g. More details of AD can be
found in a monograph [82] or at http://www.autodiff.org. Particularly, in

http://www.autodiff.org

ADJOINT-BASED PREDICTOR-CORRECTOR SCP ALGORITHM 23

the NMPC framework, the constraint function g is usually obtained from a
dynamic system of the form:{

η̇(t) = G(η(t), x, t), t0 ≤ t ≤ tf ,
η(t0) = η0(x),

(2.3.1)

by applying a direct transcription, where η is referred to as a state vector and
x is a parameter vector. The adjoint directional derivative vector g′(x)T y is
nothing else than the gradient vector ∂V

∂x of the function V (x) := g(x)T y. In
the dynamic system context, this function V is a special case of the general
functional V (x) := e(η(tf)) +

∫ tf
t0
v(η, x, t)dt. By simultaneously integrating

the dynamic system and its adjoint sensitivity system λ̇ = −GTη λ − vTη and
λ(tf) = ∇ηe(η(tf)), we can evaluate the gradient vector of V with respect to
x as dV

dx := λT (t0)∂η0
∂x +

∫ tf
t0

(vx + λTGx)dt, where λ(t0) is the solution of the
adjoint system at t0. Note that the cost of integrating the adjoint system is of
the same order as integrating the forward dynamics, and crucially, independent
of the dimension of x. Adjoint differentiation of dynamic systems is performed,
e.g. in an open source software package, Sundials [169]. For more details of
adjoint sensitivity analysis of dynamic systems, we refer the reader to [38, 169].

The adjoint-based predictor-corrector SCP algorithmic framework (APCSCP)
is described as follows.

Algorithm 2.3.1.(Adjoint-based predictor-corrector SCP algorithm).
Initialization. For a given parameter ξ0 ∈ P, solve approximately (off-line)
P(ξ0) to get an approximate KKT point z0 := (x0, y0). Compute g(x0), find
a matrix A0 which approximates g′(x0) and H0 ∈ Sn+. Then, compute vector
s0 :=

(
g′(x0)−A0

)T
y0.

Iteration k (k = 0, 1, . . .). For given zk, Ak and Hk, perform the following
steps:

Step 1. Get a new parameter value ξk+1 ∈ P.

Step 2. Solve the convex subproblem P(zk, Ak, Hk; ξk+1) to obtain a solution
xk+1 and the corresponding multiplier yk+1.

Step 3. Evaluate g(xk+1), update (or recompute) matrices Ak+1 and Hk+1 ∈
Sn+. Compute vector sk+1 := g′(xk+1)T yk+1 −ATk+1y

k+1. Set k := k + 1
and go back to Step 1.

End.
The core step of Algorithm 2.3.1 is to solve the convex subproblem
P(zk, Ak, Hk; ξ) at each iteration. In Algorithm 2.3.1 we do not mention

24 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

explicitly the method to solve P(zk, Ak, Hk; ξ). In practice, to reduce the
computational time, we can either implement an optimization method which
exploits the structure of the problem, e.g. block structure, separable structure
[70, 198, 221] or rely on several efficient methods and software tools that are
available for convex optimization [30, 142, 148, 180, 204]. In this chapter, we
are most interested in the case where one evaluation of g′ is very expensive. A
possible simple choice of Hk is Hk = 0 for all k ≥ 0.

The initial point z0 is obtained by solving off-line P(ξ0). However, as we will
show later in Corollary 2.4.1 that if we choose z0 close to the set of KKT points
Z∗(ξ0) of P(ξ0) (not necessarily an exact solution) then the new approximate
KKT point z1 of P(z0, A0, H0; ξ1) is still close to Z∗(ξ1) of P(ξ1) provided that
‖ξ1 − ξ0‖ is sufficiently small. Hence, in practice, we only need to approximately
solve problem P(ξ0) to get a starting point z0.

In the NMPC framework, the parameter ξ usually coincides with the initial
state of the dynamic system at the current time of the moving horizon. If
matrix Ak ≡ g′(xk), the exact Jacobian matrix of g at xk and Hk ≡ 0, then this
algorithm collapses to the real-time SCP method (RTSCP) considered in [191].

2.4 Contraction estimate

In this section, we will show that under certain assumptions, the sequence
{zk}k≥0 generated by Algorithm 2.3.1 remains close to the sequence of the true
KKT points {z̄k}k≥0 of problem P(ξ). Without loss of generality, we assume
that the objective function f is linear, i.e. f(x) = cTx, where c ∈ Rn is given.
Indeed, since f is convex, by using a slack variable s, we can reformulate P(ξ)
as a nonlinear program min(x,s)

{
s | g(x) +Mξ = 0, x ∈ Ω, f(x) ≤ s

}
.

KKT condition as a generalized equation

Let us first define the Lagrange function of problem P(ξ), where f is linear, as
follows:

L(x, y; ξ) := cTx+ (g(x) +Mξ)T y,

where y is the Lagrange multiplier associated with the constraint g(x)+Mξ = 0.
Since the constraint x ∈ Ω is convex and implicitly represented, we will consider
it separately. The KKT condition for P(ξ) is now written as:{

0 ∈ c+ g′(x)T y +NΩ(x),
0 = g(x) +Mξ,

(2.4.1)

CONTRACTION ESTIMATE 25

where NΩ(x) is the normal cone of Ω at x defined as:

NΩ(x) :=
{{

u ∈ Rn | uT (x− v) ≥ 0, v ∈ Ω
}
, if x ∈ Ω

∅, otherwise.
(2.4.2)

Note that the first line of (2.4.1) implicitly includes the constraint x ∈ Ω.

A pair (x̄(ξ), ȳ(ξ)) satisfying (2.4.1) is called a KKT point of P(ξ) and x̄(ξ) is
called a stationary point of P(ξ) with the corresponding multiplier ȳ(ξ). Let
us denote by Z∗(ξ) and X∗(ξ) the set of KKT points and the set of stationary
points of P(ξ), respectively. In the sequel, we use the letter z for the pair of
(x, y), i.e. z := (xT , yT)T .

Throughout this chapter, we require the following assumptions which are
standard in optimization.
Asumption A.2.4.1. The function g is twice differentiable on its domain.
Asumption A.2.4.2. For a given ξ0 ∈ P, problem P(ξ0) has at least one KKT
point z̄0, i.e. Z∗(ξ0) 6= ∅.

Our aim here is to rewrite the KKT system (2.4.1) as a generalized equation
and then using the theory of generalized equations to prove a main contraction
result for Algorithm 2.3.1. Let us define:

F (z) :=
(
c+ g′(x)T y

g(x)

)
, (2.4.3)

and K := Ω×Rm. Then, the KKT condition (2.4.1) can be expressed in terms
of a parametric generalized equation as follows:

0 ∈ F (z) + Cξ +NK(z), (2.4.4)

where C :=
[0
M

]
. Generalized equation is an essential tool to study many

problems in nonlinear analysis, perturbation analysis, variational calculations
as well as optimization [28, 112, 162].

Suppose that, for some ξk ∈ P, the set of KKT points Z∗(ξk) of P(ξk) is
nonempty. For any fixed z̄k ∈ Z∗(ξk), we define the following set-valued
mapping:

L(z; z̄k, ξk) := F (z̄k) + F ′(z̄k)(z − z̄k) + Cξk +NK(z). (2.4.5)

We also define the inverse mapping L−1 : Rn+m → Rn+m of L(·; z̄k, ξk) as
follows:

L−1(δ; z̄k, ξk) :=
{
z ∈ Rn+m | δ ∈ L(z; z̄k, ξk)

}
. (2.4.6)

26 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

Now, we consider the KKT condition of the subproblem P(zk, Ak, Hk; ξ). For
given neighborhoods B(z̄k, rz) of z̄k and B(ξk, rξ) of ξk, and zk ∈ B(z̄k, rz),
ξk+1 ∈ B(ξk, rξ) and given matrix Ak and matrix Hk ∈ Sn+, let us consider
the convex subproblem P(zk, Ak, Hk; ξk+1) with respect to the parameter
(zk, Ak, Hk, ξk+1). The KKT condition of this problem is expressed as follows:{

0 ∈ c+m(zk, Ak) +Hk(x− xk) +ATk y +NΩ(x),
0 = g(xk) +Ak(x− xk) +Mξk+1,

(2.4.7)

where NΩ(x) is defined by (2.4.2). Suppose that the Slater constraint
qualification holds for the subproblem P(zk, Ak, Hk; ξk+1), i.e.:

ri(Ω) ∩
{
x ∈ Rn | g(xk) +Ak(x− xk) +Mξk+1 = 0

}
6= ∅,

where ri(Ω) is the relative interior of Ω. Then by convexity of Ω, a point
zk+1 := (xk+1, yk+1) is a KKT point of P(zk, Ak, Hk; ξk+1) if and only if xk+1

is a solution to P(zk, Ak, Hk; ξk+1) associated with the multiplier yk+1.

Since g is twice differentiable by Assumption A.2.4.1 and f is linear, for a
given z = (x, y), we have:

∇2
xL(z) =

m∑
i=1

yi∇2gi(x), (2.4.8)

the Hessian matrix of the Lagrange function L, where ∇2gi(·) is the Hessian
matrix of gi (i = 1, . . . ,m). Let us define the following matrix:

F̃ ′k :=
[
Hk ATk
Ak 0

]
, (2.4.9)

where Hk ∈ Sn+. The KKT condition (2.4.7) can be written as a parametric
linear generalized equation:

0 ∈ F (zk) + F̃ ′k(z − zk) + Cξk+1 +NK(z), (2.4.10)

where zk, F̃ ′k and ξk+1 are considered as parameters. Note that if Ak = g′(xk)
and Hk = ∇2

xL(zk) then (2.4.10) is the linearization of the nonlinear generalized
equation (2.4.4) at (zk, ξk+1) with respect to z.
Remark 2.4.1. Note that (2.4.10) is a generalization of (2.2.3), where the
approximate Jacobian F̃ ′k is used instead of the exact one. Therefore, (2.4.10)
can be viewed as one iteration of the inexact predictor-corrector path-following
method for solving (2.4.4).

CONTRACTION ESTIMATE 27

Strong regularity concept

We recall the following definition of the strong regularity concept. This definition
can be considered as the strong regularity of the generalized equation (2.4.4) in
the context of nonlinear optimization, see [160].
Definition 2.4.1. Let ξk ∈ P such that the set of KKT points Z∗(ξk) of P(ξk)
is nonempty. Let z̄k ∈ Z∗(ξk) be a given KKT point of P(ξk). Problem P(ξk) is
said to be strongly regular at z̄k if there exist neighborhoods B(0, r̄δ) of the origin
and B(z̄k, r̄z) of z̄k such that the mapping z∗k(δ) := B(z̄k, r̄z) ∩ L−1(δ; z̄k, ξk)
is single-valued (i.e. the set z∗k(δ) only contains one element) and Lipschitz
continuous in B(0, r̄δ) with a Lipschitz constant 0 < γ < +∞, i.e.:

‖z∗k(δ)− z∗k(δ′)‖ ≤ γ ‖δ − δ′‖ , ∀δ, δ′ ∈ B(0, r̄δ). (2.4.11)

Note that the constants γ, r̄z and r̄δ in Definition 2.4.1 are global and do not
depend on the index k.

From the definition of L−1 where strong regularity holds, there exists a unique
z∗k(δ) such that δ ∈ F (z̄k) + F ′(z̄k)(z∗k(δ)− z̄k) + Cξk +NK(z∗k(δ)). Therefore,

z∗k(δ) ∈ (F ′(z̄k) +NK)−1 (F ′(z̄k)z̄k − F (z̄k)− Cξk + δ
)

= J̄k
(
F ′(z̄k)z̄k − F (z̄k)− Cξk + δ

)
,

where J̄k := (F ′(z̄k)+NK)−1. The strong regularity of P(ξ) at z̄k is equivalent to
the single-valuedness and the Lipschitz continuity of J̄k around vk := F ′(z̄k)z̄k−
F (z̄k)− Cξk.

The strong regularity concept is widely used in variational analysis, perturbation
analysis as well as in optimization [28, 112, 153, 162]. In view of optimization,
strong regularity implies the strong second order sufficient optimality condition
(SSOSC) if the linear independence constraint qualification (LICQ) holds [160].
If the convex set Ω is polyhedral and the LICQ holds, then strong regularity is
equivalent to SSOSC [60]. In order to interpret the strong regularity condition
of P(ξk) at z̄k ∈ Z∗(ξk) in terms of perturbed optimization, we consider the
following optimization problem:

min
x∈Rn

(c− δc)Tx+ 1
2 (x− x̄k)T∇2

xL(x̄k, ȳk)(x− x̄k)
s.t. g(x̄k) + g′(x̄k)(x− x̄k) +Mξk = δg,

x ∈ Ω.
(2.4.12)

Here, δ = (δc, δg) ∈ B(0, r̄δ) is a perturbation. Problem P(ξk) is strongly regular
at z̄k if and only if (2.4.12) has a unique KKT point z∗k(δ) in B(z̄k, r̄z) and z∗k(·)
is Lipschitz continuous in B(0, r̄δ) with a Lipschitz constant γ.

28 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

Example 2.4.1. Let us recall example (2.2.1) in Subsection 2.2. The optimal
multipliers associated with two constraints x2

1+2x2+2−4ξ = 0 and x2
1−x2

2+1 ≤
0 are y∗1 = (2

√
ξ − 1)[8

√
ξ2 − ξ

√
ξ]−1 > 0 and y∗2 = [8

√
ξ2 − ξ

√
ξ]−1 > 0,

respectively. Since the last inequality constraint is active while x ≥ 0 is inactive,
we can easily compute the critical cone as C(x∗ξ , y∗) = {(d1, 0) ∈ R2 | x∗ξ1d1 = 0}.
The Hessian matrix ∇2

xL(x∗ξ , y∗) =
[

2(y∗1+y∗2) 0
0 −2y∗2

]
of the Lagrange function L

is positive definite in C(x∗ξ , y∗). Hence, the second order sufficient optimality
condition for (2.2.1) is satisfied. Moreover, y∗2 > 0 which says that the strict
complementarity condition holds. Therefore, problem (2.2.1) satisfies the strong
second order sufficient condition. On the other hand, it is easy to check that
the LICQ condition holds for (2.2.1) at x∗ξ . By applying [160, Theorem 4.1], we
can conclude that (2.2.4) is strongly regular at (x∗ξ , y∗). ♦

The following lemma shows the nonemptiness of Z∗(ξ) in the neighborhood of
the parameter value ξk.
Lemma 2.4.1. Suppose that Assumption A.2.4.1 is satisfied and Z∗(ξk) is
nonempty for a given ξk ∈ P. Suppose further that problem P(ξk) is strongly
regular at z̄k for a given z̄k ∈ Z∗(ξk). Then there exist neighborhoods B(ξk, rξ)
of ξk and B(z̄k, rz) of z̄k such that Z∗(ξk+1) is nonempty for all ξk+1 ∈ B(ξk, rξ)
and Z∗(ξk+1) ∩ B(z̄k, rz) contains only one point z̄k+1. Moreover, there exists
a constant 0 ≤ σ̄ < +∞ such that:∥∥z̄k+1 − z̄k

∥∥ ≤ σ̄ ‖ξk+1 − ξk‖ . (2.4.13)

Proof. Since the KKT condition of P(ξk) is equivalent to the generalized
equation (2.4.4) with ξ = ξk, by applying [160, Theorem 2.1] we conclude that
there exist neighborhoods B(ξk, rξ) of ξk and B(z̄k, rz) of z̄k such that Z∗(ξk+1)
is nonempty for all ξk+1 ∈ B(ξk, rξ) and Z∗(ξk+1) ∩ B(z̄k, rz) contains only
one point z̄k+1. On the other hand, since

∥∥F (z̄k) + Cξk − F (z̄k)− Cξk+1
∥∥ =

‖M(ξk − ξk+1)‖ ≤ ‖M‖ ‖ξk+1 − ξk‖, by using the formula [160, p. 2.4], we
obtain the estimate (2.4.13).

Contraction estimate for APCSCP with inexact Jacobian

In order to prove a contraction estimate for APCSCP, throughout this section,
we make the following assumptions.
Asumption A.2.4.3. For a given z̄k ∈ Z∗(ξk), k ≥ 0, the following conditions
are satisfied:

CONTRACTION ESTIMATE 29

a) There exists a constant 0 ≤ κ < 1
2γ such that:∥∥F ′(z̄k)− F̃ ′k

∥∥ ≤ κ, (2.4.14)

where F̃ ′k is defined by (2.4.9) and γ is the constant in Definition 2.4.1.

b) The Jacobian mapping F ′(·) is Lipschitz continuous on B(z̄k, rz) around
z̄k, i.e. there exists a constant 0 ≤ ω < +∞ such that:∥∥F ′(z)− F ′(z̄k)

∥∥ ≤ ω ∥∥z − z̄k∥∥ , ∀z ∈ B(z̄k, rz). (2.4.15)

Note that Assumption A.2.4.3 is commonly used in the theory of Newton-type
and Gauss-Newton methods [48, 52], where the residual term is required to be
sufficiently small in a neighborhood of the local solution. From the definition of
F̃ ′k we have:

F ′(z̄k)− F̃ ′k =
[
∇2
xL(z̄k)−Hk g′(x̄k)T −ATk
g′(x̄k)−Ak O

]
.

Hence,
∥∥F ′(z̄k)− F̃ ′k

∥∥ depends on the norms of ∇2
xL(z̄k)−Hk and g′(x̄k)−Ak.

These quantities are the error of the approximations Hk and Ak to the Hessian
matrix ∇2

xL(z̄k) and the Jacobian matrix g′(x̄k), respectively. On the one
hand, Assumption A.2.4.3a) requires the positive definiteness of Hk to be an
approximation of ∇2

xL (which is not necessarily positive definite). On the other
hand, it requires that matrix Ak is a sufficiently good approximation to the
Jacobian matrix g′ in the neighborhood of the stationary point x̄k. Note that
the matrix Hk in the Newton-type method proposed in [29] is not necessarily
positive definite.

Now, let us define the following mapping:

Jk := (F̃ ′k +NK)−1, (2.4.16)

where F̃ ′k is defined by (2.4.9). The lemma below shows that Jk is single-valued
and Lipschitz continuous in a neighbourhood of v̄k := F̃ ′kz̄

k − F (z̄k) − Cξk.
Since Jk(v) is a set for a given v, the single-valuedness of Jk means that the set
Jk(v) only contains one element for a given v. We note that NK is a maximal
monotone operator [162] and F̃ ′k is a matrix. If F̃ ′k is symmetric positive definite
then Jk can be considered as a generalized resolvent operator in the sense of
Moreau–Yosida regularization [162]. In our context, the operator Jk defined by
(2.4.16) imitates a similar property of the resolvent operator but locally.
Lemma 2.4.2. Suppose that Assumptions A.2.4.1, A.2.4.2 and A.2.4.3a)
are satisfied. Then there exist neighborhoods B(ξk, rξ) and B(z̄k, rz) such that
if we take any zk ∈ B(z̄k, rz) and ξk+1 ∈ B(ξk, rξ) then the mapping Jk defined

30 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

by (2.4.16) is single-valued in a neighbourhood B(v̄k, rv), where v̄k := F̃ ′kz̄
k −

F (z̄k)− Cξk. Moreover, the following inequality holds:

‖Jk(v)− Jk(v′)‖ ≤ β ‖v − v′‖ , ∀v, v′ ∈ B(v̄k, rv), (2.4.17)

where β := γ
1−γκ > 0 is a Lipschitz constant.

Proof. Let us fix a neighbourhood B(v̄k, rv) of v̄k. Suppose for contradiction
that Jk is not single-valued in B(v̄k, rv), then for a given v the set Jk(v) contains
at least two points z and z′ such that ‖z − z′‖ 6= 0. We have:

v ∈ F̃ ′kz +NK(z) and v ∈ F̃ ′kz′ +NK(z′). (2.4.18)

Let

δ := v − [F̃ ′kz̄k − F (z̄k)− Cξk] + [F ′(z̄k)− F̃ ′k](z − z̄k),
and (2.4.19)

δ′ := v − [F̃ ′kz̄k − F (z̄k)− Cξk] + [F ′(z̄k)− F̃ ′k](z′ − z̄k).

Then (2.4.18) can be written as:

δ ∈ F (z̄k) + F ′(z̄k)(z − z̄k) + Cξk +NK(z),
and (2.4.20)

δ′ ∈ F (z̄k) + F ′(z̄k)(z′ − z̄k) + Cξk +NK(z′).

Since v in the neighbourhood B(v̄k, rv) of v̄k := F̃ ′kz̄
k − F (z̄k)− Cξk, we have:

‖δ‖ ≤
∥∥v − v̄k∥∥+

∥∥[F ′(z̄k)− F̃ ′k](z − z̄k)
∥∥

≤ rv +
∥∥F ′(z̄k)− F̃ ′k

∥∥∥∥z − z̄k∥∥
(2.4.14)
≤ rv + κ

∥∥z − z̄k∥∥ .
From this inequality, we see that we can shrink B(z̄k, rz) and B(v̄k, rv) sufficiently
small (if necessary) such that ‖δ‖ ≤ r̄δ. Hence, δ ∈ B(0, r̄δ). Similarly, δ′ ∈
B(0, r̄δ).

Now, using the strong regularity assumption of P(ξk) at z̄k, it follows from
(2.4.20) that:

‖z − z′‖ ≤ γ ‖δ − δ′‖ . (2.4.21)

CONTRACTION ESTIMATE 31

However, using (2.4.19), we have:

‖δ − δ′‖ =
∥∥[F ′(z̄k)− F̃ ′k](z − z′)

∥∥ ≤ ∥∥F ′(z̄k)− F̃ ′k
∥∥ ‖z − z′‖

(2.4.14)
≤ κ ‖z − z′‖ .

Plugging this inequality into (2.4.21) and then using the condition γκ < 1
2 < 1,

we get:
‖z − z′‖ < ‖z − z′‖ ,

which contradicts to z 6= z′. Hence, Jk is single-valued.

Finally, we prove the Lipschitz continuity of Jk. Let z = Jk(v) and z′ = Jk(v′),
where v, v′ ∈ B(v̄k, rv). Similar to (2.4.20), these expressions can be written
equivalently to:

δ ∈ F (z̄k) + F ′(z̄k)(z − z̄k) + Cξk +NK(z),
and (2.4.22)

δ′ ∈ F (z̄k) + F ′(z̄k)(z′ − z̄k) + Cξk +NK(z′),

where

δ := v − [F̃ ′kz̄k − F (z̄k)− Cξk] + [F ′(z̄k)− F̃ ′k](z − z̄k),
and (2.4.23)

δ′ := v′ − [F̃ ′kz̄k − F (z̄k)− Cξk] + [F ′(z̄k)− F̃ ′k](z′ − z̄k).

By using again the strong regularity assumption, it follows from (2.4.22) and
(2.4.23) that:

‖z − z′‖ ≤ γ ‖δ − δ′‖

≤ γ ‖v − v′‖+ γ
∥∥[F ′(z̄k)− F̃ ′k](z − z′)

∥∥
(2.4.14)
≤ γ ‖v − v′‖+ γκ ‖z − z′‖ .

Since γκ < 1
2 < 1, rearranging the last inequality we get:

‖z − z′‖ ≤ γ

1− γκ ‖v − v
′‖ ,

which shows that Jk satisfies (2.4.17) with a constant β := γ
1−γκ > 0.

32 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

Let us recall that if zk+1 is a KKT point of the convex subproblem
P(zk, Ak, Hk; ξk+1) then

0 ∈ F̃ ′k(zk+1 − zk) + F (zk) + Cξk+1 +NK(zk+1).

According to Lemma 2.4.2, if zk ∈ B(z̄k, rz) then problem P(zk, Ak, Hk; ξ) is
uniquely solvable. We can write its KKT condition equivalently as:

zk+1 = Jk
(
F̃ ′kz

k − F (zk)− Cξk+1
)
. (2.4.24)

Since z̄k+1 is the solution of (2.4.4) at ξk+1, we have 0 = F (z̄k+1)+Cξk+1+ūk+1,
where ūk+1 ∈ NK(z̄k+1). Moreover, since z̄k+1 = Jk(F̃ ′kz̄k+1 + ūk+1), we can
write:

z̄k+1 = Jk
(
F̃ ′kz̄

k+1 − F (z̄k+1)− Cξk+1
)
. (2.4.25)

The main result of this section is stated in the following theorem.
Theorem 2.4.2. Suppose that Assumptions A.2.4.1-A.2.4.2 are satisfied for
some ξ0 ∈ P. Then, for k ≥ 0 and z̄k ∈ Z∗(ξk), if P(ξk) is strongly regular at
z̄k then there exist neighborhoods B(z̄k, rz) and B(ξk, rξ) such that:

a) The set of KKT points Z∗(ξk+1) of P(ξk+1) is nonempty for any ξk+1 ∈
B(ξk, rξ).

b) If, in addition, Assumption A.2.4.3a) is satisfied then the subproblem
P(zk, Ak, Hk; ξk+1) is uniquely solvable in the neighborhood B(z̄k, rz).

c) Moreover, if, in addition, Assumption A.2.4.3b) is satisfied then the
sequence {zk}k≥0 generated by Algorithm 2.3.1, where ξk+1 ∈ B(ξk, rξ),
guarantees:∥∥zk+1 − z̄k+1∥∥ ≤ (α+ c1

∥∥zk − z̄k∥∥) ∥∥zk − z̄k∥∥
+ (c2 + c3 ‖ξk+1 − ξk‖) ‖ξk+1 − ξk‖ , (2.4.26)

where 0 ≤ α < 1, 0 ≤ ci < +∞, i = 1, . . . , 3 and c2 > 0 are given
constants and z̄k+1 ∈ Z∗(ξk+1).

Proof. We prove the theorem by induction. For k = 0, we have Z∗(ξ0) is
nonempty by Assumption A.2.4.2. Now, we assume Z∗(ξk) is nonempty for
some k ≥ 0. We will prove that Z∗(ξk+1) is nonempty for some ξk+1 ∈ B(ξk, rξ),
a neighborhood of ξk.

Indeed, since Z∗(ξk) is nonempty for some ξk ∈ P, we take an arbitrary
z̄k ∈ Z∗(ξk) such that P(ξk) is strong regular at z̄k. Now, by applying Lemma

CONTRACTION ESTIMATE 33

2.4.1 to problem P(ξk), then we conclude that there exist neighborhoods B(z̄k, rz)
of z̄k and B(ξk, rξ) of ξk such that Z∗(ξk+1) is nonempty for any ξk+1 ∈ B(ξk, rξ).

Next, if, in addition, Assumption A.2.4.3a) holds then the conclusions of
Lemma 2.4.2 hold. By induction, we conclude that the convex subproblem
P(z̄k, Ak, ξk) is uniquely solvable in B(z̄k, rz) for any ξk+1 ∈ B(ξk, rξ).

Finally, we prove inequality (2.4.26). From (2.4.24), (2.4.25) and the Lipschitz
continuity of Jk in (2.4.17), we have:∥∥zk+1 − z̄k+1∥∥ (2.4.24)=

∥∥Jk ((F̃ ′kzk − F (zk)− Cξk+1
)
− z̄k+1∥∥

(2.4.25)=
∥∥∥Jk(F̃ ′kzk − F (zk)− Cξk+1

)
− Jk

(
F̃ ′kz̄

k+1 − F (z̄k+1)− Cξk+1

)∥∥∥
(2.4.17)
≤ β

∥∥F̃ ′k(zk − z̄k+1)− F (zk) + F (z̄k+1)
∥∥ (2.4.27)

= β
∥∥∥ [F̃ ′k(zk − z̄k)− F (zk) + F (z̄k)

]
+
[
F (z̄k+1)− F (z̄k)− F̃ ′k(z̄k+1 − z̄k)

] ∥∥∥.
By using the mean-value theorem and Assumption A.2.4.3b), we further
estimate (2.4.27) as:∥∥zk+1 − z̄k+1∥∥ ≤ β∥∥∥[F̃ ′k − F ′(z̄k)](zk − z̄k)

−
∫ 1

0
[F ′(z̄k + t(zk − z̄k))− F ′(z̄k)](zk − z̄k)dt

∥∥∥
+ β

∥∥∥[F̃ ′k−F ′(z̄k)](z̄k+1−z̄k)−
∫ 1

0
[F ′(z̄k+t(z̄k+1−z̄k))−F ′(z̄k)](zk+1− z̄k)dt

∥∥∥
(2.4.14)+(2.4.15)

≤ β
(
κ+ ω

2
∥∥zk − z̄k∥∥)∥∥zk − z̄k∥∥

+ β
(
κ+ ω

2
∥∥z̄k+1 − z̄k

∥∥)∥∥z̄k+1 − z̄k
∥∥ . (2.4.28)

By substituting (2.4.13) into (2.4.28) we obtain:∥∥zk+1 − z̄k+1∥∥ ≤ β (κ+ ω

2
∥∥zk − z̄k∥∥)∥∥zk − z̄k∥∥

+ β

(
κσ̄ + ωσ̄2

2 ‖ξk+1 − ξk‖
)
‖ξk+1 − ξk‖ .

34 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

If we define α := βκ = γκ
1−γκ < 1 due to A.2.4.3a), c1 := γω

2(1−γκ) ≥ 0,
c2 := γκσ̄

1−γκ > 0 and c3 := γωσ̄2

2(1−γκ) ≥ 0 as four given constants then the last
inequality is indeed (2.4.26).

The following corollary shows the stability of the approximate sequence {zk}k≥0
generated by Algorithm 2.3.1.
Corollary 2.4.1. Under the assumptions of Theorem 2.4.2, there exists a
positive number 0 < rz < r̄z := (1 − α)c−1

1 such that if the initial point z0 in
Algorithm 2.3.1 is chosen such that

∥∥z0 − z̄0
∥∥ ≤ rz, where z̄0 ∈ Z∗(ξ0) then,

for any k ≥ 0, we have: ∥∥zk+1 − z̄k+1∥∥ ≤ rz, (2.4.29)

provided that ‖ξk+1 − ξk‖ ≤ rξ, where z̄k+1 ∈ Z∗(ξk+1) and 0 < rξ ≤ r̄ξ with:

r̄ξ :=
{

(2c3)−1
[√

c22 + 4c3rz(1− α− c1rz)− c2
]

if c3 > 0,
c−1
2 rz(1− α− c1rz) if c3 = 0.

Consequently, the error sequence {ek}k≥0, where ek :=
∥∥zk − z̄k∥∥, between the

exact KKT point z̄k and the approximate KKT point zk of P(ξk) is nonincreasing
and therefore bounded.

Proof. Since 0 ≤ α < 1, we have r̄z := (1− α)c−1
1 > 0. Let us choose rz such

that 0 < rz < r̄z. If z0 ∈ B(z̄0, rz), i.e.
∥∥z0 − z̄0

∥∥ ≤ rz, then it follows from
(2.4.26) that:∥∥z1 − z̄1∥∥ ≤ (α+ c1rz)rz + (c2 + c3 ‖ξ1 − ξ0‖) ‖ξ1 − ξ0‖ .

In order to ensure
∥∥z1 − z̄1

∥∥ ≤ rz, we need (c2 + c3 ‖ξ1 − ξ0‖) ‖ξ1 − ξ0‖ ≤ ρ :=
(1−α−c1rz)rz. Since 0 < rz < r̄z, ρ > 0. The last condition leads to ‖ξ1 − ξ0‖ ≤
(2c3)−1(

√
c22 + 4c3ρ−c2) if c3 > 0 and ‖ξ1 − ξ0‖ ≤ c−1

2 rz(1−α−c1rz) if c3 = 0.
By induction, we conclude that inequality (2.4.29) holds for all k ≥ 0. The
nonincrease of {ek} follows directly from the estimate (2.4.29).

The conclusion of Corollary 2.4.1 is illustrated in Figure 2.3, where the
approximate sequence {zk}k≥0 computed by Algorithm 2.3.1 remains close
to the sequence of the true KKT points {z̄k}k≥0 if the starting point z0 is
sufficiently close to z̄0. Let us assume that the constant ω > 0. Then we have
c3 > 0. If we choose rz := r̄z

2 = 1−2γκ
γω then the quantity r̄ξ in Corollary 2.4.1

can be tightened to r̄ξ =
{
γωσ̄

[
γκ

(1−2γκ)2 + σ̄
1−γκ

]}−1
.

CONTRACTION ESTIMATE 35

6
z̄(ξ)

-
ξ

pppppppp
ppppp

pppppppp
pppppppp
pppp

((((
(

pppppppp
pppppppp
pppppppp
pppp

pppppppp
pppppppp
pppppppp
ppppppp

rr
rr

rr rr
p p p p p p p p p p p p p p p

p

ξ0 ξ1 ξk ξk+1

z0

z̄0

zk

z̄k

zk+1

z̄k+1

0

[1]{
} [2]

︷ ︸︸ ︷[4]

[3]{
6

?

B(z̄k, rz)

-�B(ξk, rξ)

[1] :
∥∥zk − z̄k∥∥

[2] :
∥∥zk+1 − z̄k+1

∥∥
[3] :

∥∥z̄k+1 − z̄k
∥∥

[4] : ‖ξk+1 − ξk‖
KKT point sequence z̄k
Approximate sequence {zk}

Figure 2.3: The approximate sequence {zk}k≥0 along the trajectory z̄(·) of the
KKT points.

We can also simplify the contraction estimate (2.4.26) as follows:∥∥zk+1 − z̄k+1∥∥ ≤ ν ∥∥zk − z̄k∥∥+ c ‖ξk+1 − ξk‖ , (2.4.30)

where ν := α+ c1rz > 0 and c := c2 + c3rξ > 0. Since α ∈ (0, 1), we can choose
rz > 0 sufficiently small such that ν ∈ (0, 1).
Remark 2.4.3. In Algorithm 2.3.1, instead of performing one SCP iteration
for each value ξk of the parameter ξ, we can perform p SCP iterations (p ≥ 1).
In this case, we obtain the following contraction estimate:∥∥zk+1 − z̄k+1∥∥ ≤ νp ∥∥zk − z̄k∥∥+ νp−1c ‖ξk+1 − ξk‖ . (2.4.31)

Indeed, at the value ξk, we can apply (2.4.30) p times with conditions ξk =
ξk+1 = · · · = ξk+p−1 and then we move to the next value ξk+1 to obtain (2.4.30).

Contraction estimate for APCSCP with exact Jacobian

If Ak ≡ g′(xk) then the correction vector sk = 0 and the convex subproblem
P(zk, Ak, Hk; ξ) collapses to the following one:

min
x∈Rn

{
cTx+ 1

2 (x− xk)THk(x− xk)
}

s.t. g(xk) + g′(xk)(x− xk) +Mξ = 0,
x ∈ Ω.

P(xk, Hk; ξ)

Note that problem P(xk, Hk; ξ) does not depend on the multiplier yk if we choose
Hk independently of yk. We refer to a variant of Algorithm 2.3.1 where we use
the convex subproblem P(xk, Hk; ξ) instead of P(zk, Ak, Hk; ξ) as a predictor-
corrector SCP algorithm (PCSCP) for solving a sequence of the optimization
problems {P(ξk)}k≥0.

36 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

Instead of Assumption A.2.4.3a) in the previous section, we make the following
assumption.
A2.4.3’. There exists a constant 0 ≤ κ̃ < 1

2γ such that∥∥∇2
xL(z̄k)−Hk

∥∥ ≤ κ̃, ∀k ≥ 0. (2.4.32)

where ∇2
xL(z) defined by (2.4.8).

Assumption A.2.4.3’ requires that the approximation Hk to the Hessian matrix
∇2
xL(z̄k) of the Lagrange function L at z̄k is sufficiently close. Note that matrix

Hk in the framework of the SSDP method in [44] is not necessarily positive
definite.

Example 2.4.2. Let us continue analyzing example (2.2.4). The Hessian
matrix of the Lagrange function L associated with the equality constraint x2

1 +
2x2 + 2− 4ξ = 0 is ∇2

xL(x∗ξ , y∗1) =
[

2y∗1 0
0 0

]
, where y∗1 is the multiplier associated

with the equality constraint at x∗ξ . Let us choose a positive semidefinite matrix
Hk :=

[
h11 0
0 0

]
, where h11 ≥ 0, then

∥∥∥∇2
xL(x∗ξ , y∗1)−Hk

∥∥∥ = |y∗1 − h11|. Since
y∗1 ≥ 0, for an arbitrary κ̃ > 0, we can choose h11 ≥ 0 such that |h11 − y∗1 | ≤ κ̃.
Consequently, the condition (2.4.32) is satisfied. In Example 2.2.4 of Subsection
2.2, we choose h11 = 0. ♦

The following theorem shows the same conclusions as in Theorem 2.4.2 and
Corollary 2.4.1 for the predictor-corrector SCP algorithm.
Theorem 2.4.4. Suppose that Assumptions A.2.4.1-A.2.4.2 are satisfied for
some ξ0 ∈ P. Then, for k ≥ 0 and z̄k ∈ Z∗(ξk), if P(ξk) is strongly regular at
z̄k then there exist neighborhoods B(z̄k, rz) and B(ξk, rξ) such that:

a) The set of KKT points Z∗(ξk+1) of P(ξk+1) is nonempty for any ξk+1 ∈
B(ξk, rξ).

b) If, in addition, Assumption A.2.4.3’ is satisfied then the subproblem
P(xk, Hk; ξk+1) is uniquely solvable in the neighborhood B(z̄k, rz).

c) Moreover, if, in addition, Assumption A.2.4.3b) holds then the sequence
{zk}k≥0 generated by the PCSCP algorithm, where ξk+1 ∈ B(ξk, rξ),
guarantees:∥∥zk+1 − z̄k+1∥∥ ≤ (α̃+ c̃1

∥∥zk − z̄k∥∥) ∥∥zk − z̄k∥∥
+ (c̃2 + c̃3 ‖ξk+1 − ξk‖) ‖ξk+1 − ξk‖ , (2.4.33)

where 0 ≤ α̃ < 1, 0 ≤ c̃i < +∞, i = 1, · · · , 3 and c̃2 > 0 are given
constants and z̄k+1 ∈ Z∗(ξk+1).

CONTRACTION ESTIMATE 37

d) If the initial point z0 in the PCSCP algorithm is chosen such that∥∥z0 − z̄0
∥∥ ≤ r̃z, where z̄0 ∈ Z∗(ξ0) and 0 < r̃z < ˜̄rz := c̃−1

1 (1 − α̃),
then: ∥∥zk+1 − z̄k+1∥∥ ≤ r̃z, (2.4.34)

provided that ‖ξk+1 − ξk‖ ≤ r̃ξ with 0 < r̃ξ ≤ ¯̃rξ,

¯̃rξ :=
{

(2c̃3)−1
[√

c̃22 + 4c̃3r̃z(1− α̃− c̃1r̃z)− c̃2
]

if c̃3 > 0,
c̃−1
2 r̃z(1− α̃− c̃1r̃z) if c̃3 = 0.

Consequently, the error sequence {
∥∥zk − z̄k∥∥}k≥0 between the exact

KKT point z̄k and the approximation KKT point zk of P(ξk) is still
nonincreasing and therefore bounded.

Proof. The statement a) of Theorem 2.4.4 follows from Theorem 2.4.2. We
prove b). Since Ak ≡ g′(xk), the matrix F̃ ′k defined in (2.4.9) becomes:

ˆ̃F ′k :=
[
Hk g′(xk)

g′(xk) 0

]
,

Moreover, since g is twice differentiable due to Assumption A.2.4.1, g′ is
Lipschitz continuous with a Lipschitz constant Lg ≥ 0 in B(x̄k, rz). Therefore,
by Assumption A.2.4.3’, we have:∥∥∥F ′(z̄k)− ˆ̃F ′k

∥∥∥2
=
∥∥∥∥[∇2

xL(z̄k) g′(x̄k)T − g′(xk)T
g′(x̄k)− g′(xk) 0

]∥∥∥∥2

≤
∥∥∇2

xL(z̄k)−Hk

∥∥2 + 2
∥∥g′(xk)− g′(x̄k)

∥∥2 (2.4.35)

≤ κ̃2 + 2L2
g

∥∥xk − x̄k∥∥2
.

Since κ̃γ < 1
2 , we can shrink B(z̄k, rz) sufficiently small such that:

γ(κ̃2 + 2L2
gr

2
z)1/2 <

1
2 .

If we define κ̃1 := (κ̃2 + 2L2
gr

2
z)1/2 ≥ 0 then the last inequality and (2.4.35)

imply: ∥∥∥F ′(z̄k)− ˆ̃F ′k
∥∥∥ ≤ κ̃1, (2.4.36)

where κ̃1γ <
1
2 . Similar to the proof of Lemma 2.4.2, we can show that the

mapping Ĵk := (ˆ̃F ′k +NK)−1 is single-valued and Lipschitz continuous with a
Lipschitz constant β̃ := γ(1−γκ̃1)−1 > 0 in B(z̄k, rz). Consequently, the convex

38 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

problem P(xk, Hk; ξk+1) is uniquely solvable in B(z̄k, rz) for all ξk+1 ∈ B(ξk, rξ),
which proves b).

With the same argument as the proof of Theorem 2.4.2, we can also prove the
following estimate:∥∥zk+1−z̄k

∥∥ ≤ (α̃k+c̃1
∥∥zk−z̄k∥∥) ∥∥zk−z̄k∥∥+ (c̃2 + c̃3 ‖ξk+1−ξk‖) ‖ξk+1−ξk‖ ,

where α̃ := γκ̃1(1− γκ̃1)−1 ∈ [0, 1), c̃1 := γω(2− 2γκ̃1)−1 ≥ 0, c̃2 := γκ̃1σ̄(1−
1γκ̃1)−1 > 0 and c̃3 := γωσ̄2(2 − 2γκ̃1)−1 ≥ 0. The remaining statements of
Theorem 2.4.4 are proved similarly to the proofs of Theorem 2.4.2 and Corollary
2.4.1.

Similar to Corollary 2.4.1, the constant r̄ξ in the statement d) of this theorem

can be simplified to ¯̃rξ =
{
γωσ̄

[
γκ̃1

(1−2γκ̃1)2 + σ̄
1−γκ̃1

]}−1
.

Choices of matrix Ak

In the adjoint-based predictor-corrector SCP algorithm, an approximate matrix
Ak of g′(xk) and a vector sk = (g′(xk)−Ak)T yk are required at each iteration
such that they maintain Assumption A.2.4.3. This matrix needs to be obtained
in a cost efficient way, but shall also provide a sufficiently good approximation
of g′(xk). These are conflicting objectives. Though not the subject of this
chapter, let us discuss some ways to obtain Ak. First, it might be the exact
Jacobian matrix, the most expensive option. Second, it might be computed by
a user provided approximation algorithm, e.g. based on inaccurate differential
equation solutions. Third, suppose that an initial approximation A0 is known.
For given zk and Ak, k ≥ 0, we need to compute Ak+1 and sk+1 in an efficient
way. If

∥∥Ak − g′(x̄k+1)
∥∥ is still small then we can even use the same matrix Ak

for the next iteration, i.e. Ak+1 = Ak due to Assumption A.2.4.3. Otherwise,
matrix Ak+1 can be constructed, e.g. by using low-rank updates. We can e.g.
use the two sided rank-1 updates (TR1) [58, 84] or the Broyden formulas [167].
However, it is important to note that the use of the low-rank update for matrix
Ak might destroy possible sparsity structure of matrix Ak. Then high-rank
updates might be an option [27, 83].

In Algorithm 2.3.1 we can set matrix Hk = 0 for all k ≥ 0. However, this matrix
can alternatively be updated at each iteration by using BFGS-type formulas or
the projection of ∇2

xL(zk) onto Sn+.

APPLICATIONS IN NONLINEAR PROGRAMMING 39

2.5 Applications in nonlinear programming

If the set of parameters Σ collapses to one point, i.e. Σ := {ξ} then, without
loss of generality, we assume that ξ = 0 and problem P(ξ) reduces to a nonlinear
programming problem of the form:

min
x∈Rn

f(x) := cTx

s.t. g(x) = 0,
x ∈ Ω,

(P)

where c, g and Ω are as in P(ξ). In this section we describe a local optimization
algorithm for solving (P) that is a special case of the APCSCP method.

The subproblem P(zk, Ak, Hk; ξ) in Algorithm 2.3.1 reduces to:
min
x∈Rn

cTx+ (sj)T (x− xj) + 1
2 (x− xj)THj(x− xj)

s.t. g(xj) +Aj(x− xj) = 0,
x ∈ Ω.

P(zj , Aj , Hj)

Here, we use the index j in the algorithm for the nonparametric problem (see
below) to distinguish it from the index k in the parametric case. Moreover,
matrix Hj is chosen such that Hj ∈ Sn+ as in the APCSCP method.

In order to apply the theory in the previous sections, we only consider the
full-step algorithm for solving (P) which we call full-step adjoint-based sequential
convex programming (FASCP). It is described as follows:

Algorithm 2.5.1.(Full-step adjoint-based SCP algorithm).
Initialization. Find an initial guess x0 ∈ Ω and y0 ∈ Rm, a matrix A0
approximating g′(x0) and H0 ∈ Sn+. Set s0 := (g′(x0)−A0)T y0.
Iteration j (j = 0, 1, 2, · · ·). For given zj , Aj and Hj , perform Steps 1-3:

Step 1. Solve the convex subproblem P(zj , Aj , Hj) to obtain a solution
xj+1
t and the corresponding multiplier yj+1.

Step 2. If
∥∥∥xj+1

t − xj
∥∥∥ ≤ ε, for a given tolerance ε > 0, then terminate.

Otherwise, compute the search direction ∆xj := xj+1
t − xj .

Step 3. Update xj+1 := xj + ∆xj . Evaluate the function value g(xj+1),
update (or recompute) matrices Aj+1 and Hj+1 ∈ Sn+ (if necessary) and
the correction vector sj+1.

End.

40 PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING

The following corollary shows that the full-step adjoint-based SCP algorithm
generates an iterative sequence that converges linearly to a KKT point of (P).
Corollary 2.5.1. Let Ẑ∗ 6= ∅ and ẑ∗ ∈ Ẑ∗. Suppose that Assumption A.2.4.1
holds and that problem (P) is strongly regular at ẑ∗ (in the sense of Definition
2.4.1). Suppose further that Assumption A.2.4.3a) is satisfied in B(ẑ∗, r̂z).
Then there exists a neighborhood B(ẑ∗, rz) of ẑ∗ such that, in this neighborhood,
the convex subproblem P(xj , Aj , Hj) has a unique KKT point zj+1 for any
zj ∈ B(ẑ∗, rz). Moreover, if, in addition, Assumption A.2.4.3b) holds then
the sequence {zj}j≥0 generated by Algorithm 2.5.1 starting from z0 ∈ B(ẑ∗, rz)
satisfies: ∥∥zj+1 − ẑ∗

∥∥ ≤ (α̂+ ĉ1
∥∥zj − ẑ∗∥∥)

∥∥zj − ẑ∗∥∥ , ∀j ≥ 0, (2.5.1)

where 0 ≤ α̂ < 1 and 0 ≤ ĉ1 < +∞ are given constants. Consequently, this
sequence converges linearly to ẑ∗, the unique KKT point of (P) in B(ẑ∗, rz).

Proof. The estimate (2.5.1) follows directly from Theorem 2.4.2 by taking
ξk = 0 for all k. The remaining statement is a consequence of (2.5.1).

If Aj = g′(xj) then Algorithm 2.5.1 collapses to the full-step SCP algorithm
considered in [188]. The local convergence of this variant follows similarly from
Theorem 2.4.4.
Remark 2.5.1. The adjoint-based variant, Algorithm 2.5.1, is a generalization
of the SSDP methods in [44, 65] or the SQP method presented in [106] when
the subproblems of the form P(zj , Aj , Hj) are convex.

2.6 Conclusion

In this chapter, we have proposed a generic algorithmic framework which
we call adjoint-based predictor-corrector sequential convex programming to
treat parametric optimization problems. This method is a combination of
three ingredients, namely sequential convex programming, predictor-corrector
path-following and adjoint-based optimization. Under the strong regularity
assumption, Assumption A.2.4.3a), and AssumptionA.2.4.3b) we have proved
that the tracking errors between the true KKT points of problem P(ξ) and the
approximate ones provided by the algorithm are nonincreasing and therefore
bounded. While the strong regularity concept is standard in optimization and
nonlinear analysis, the two last assumptions are needed in any Newton-type
algorithm. The main advantage of this algorithm is that it is suitable to treat
nonlinear model predictive control applications which contain certain general

CONCLUSION 41

convex constraints and may have expensive sensitivity evaluations. When
the exact Jacobian of the constraint function is used, we obtain a variant of
APCSCP which we call PCSCP. The first algorithm has been specified to
the nonparametric case to obtain a full-step adjoint-based SCP method for
solving nonconvex programming problems. The local linear convergence of this
algorithm is an immediate consequence of the general contraction theorem.

Chapter 3

SCP applications in optimal
control

Optimal control is one main area where optimization algorithms can be of
benefit. The problem obtained from any direct transcription of an optimal
control problem is a finite dimensional optimization problem. In other words,
the core procedure in the numerical solution of an optimal control problem
is an optimization algorithm. In model predictive control, methods based on
optimization techniques also require one to solve at each sampling time an
optimization problem to calculate a feedback for the next sampling time. The
aim of this chapter is to test the performance of the two algorithms, Algorithms
2.3.1 and 2.5.1, presented in Chapter 2 for solving a nonlinear model predictive
control problem as well as an optimal control problem, respectively.

3.1 NMPC of a hydro power plant

In this section, a nonlinear model predictive control (NMPC) problem of a hydro
power valley (HPV) is considered. We focus on tracking the steady state of the
dynamic system under the effect of uncertainties in some input parameters. The
full model of this problem was published in [166] as a benchmark problem. We
first apply the multiple shooting method [27] to transform the optimal control
at each time interval into a large-scale parametric optimization problem. Then
Algorithm 2.3.1 in Chapter 2 is applied to solve this parametric optimization

43

44 SCP APPLICATIONS IN OPTIMAL CONTROL

problem. We note that this problem possesses a quadratic constraint which can
be treated directly in Algorithm 2.3.1 compared to conventional approaches.

Dynamic model

We consider a hydro power plant composed of several subsystems connected
together. The system includes six dams with turbines Di (i = 1, . . . , 6) located
along a river and three lakes L1, L2 and L3 as visualized in Fig. 3.1. Here, U1 is
a duct connecting lakes L1 and L2; T1 and T2 are ducts equipped with turbines
and C1 and C2 are ducts equipped with turbines and pumps. The flows through
the turbines and pumps are the controlled variables. The complete model with
all the parameters can be found in [166].

L1

L2

L3

qin

R1D1

R2D2
R3

D3

R4D4

R5D5

R6D6

C1
T1

C2
T2

U1

qtributary

Figure 3.1: Overview of the hydro power plant.

The dynamics of the lakes is given by:
∂h(t)
∂t

= qin(t)− qout(t)
S

, (3.1.1)

where h(t) is the water level and S is the surface area of the lakes; qin and
qout are the input and output flows, respectively. The dynamics of the reaches
Ri (i = 1, . . . , 6) is described by the one-dimensional Saint-Venant partial
differential equation:{ ∂q(t,y)

∂y + ∂s(t,y)
∂t = ql(t),

1
g
∂
∂t

(
q(t,y)
s(t,y)

)
+ 1

2g
∂
∂y

(
q2(t,y)
s2(t,y)

)
+ ∂h(t,y)

∂y + If (t, y)− I0(y) = 0.
(3.1.2)

NMPC OF A HYDRO POWER PLANT 45

Here, y is the spatial variable along the flow direction of the river, q(·, ·) is the
river flow (or discharge), s(·, ·) is the wetted surface, h(·, ·) is the water level
with respect to the river bed, g is the gravitation acceleration, If is the friction
slope, I0 is the river bed slope, and ql is the lateral inflow per space unit. The
relation between s and h is given by h(t, y) = wd(y)s(t, y), where wd(y) is the
river width. Note that, by using the first equation of (3.1.2) with the condition
ql(t) ≡ 0, we can simplify the second equation of (3.1.2) as follows:

∂q

∂t
= − q

wdh

∂q

∂y
+ gwdh(I0 − If) +

(
1
wd

q2

h2 − gwdh
)
∂h

∂y
. (3.1.3)

We first discretize the first equation of (3.1.2) and (3.1.3) and compute the
steady states of these equations by fixing some parameters. The obtained steady
states will be used as the functions for the initial conditions of q and h at t = 0.
We refer to [166] for more details.

The partial differential equations (3.1.2)-(3.1.3) can be discretized by applying
the method of lines in order to obtain a system of ordinary differential equations.
Stacking all the equations together, we represent the dynamics of the system
by:

ẇ(t) = f(w, u), w(t0) = w0, (3.1.4)

where the state vector w ∈ Rnw includes all the flows and the water levels,
u ∈ Rnu represents the input vector and w0 is a given initial state. The dynamic
system consists of nw = 259 states and nu = 10 controls. The control inputs
are the flows going in the turbines, the ducts and the reaches.

Nonlinear MPC formulation

We are interested in the following NMPC setting:

min
w,u

J(w(·), u(·))
s.t. ẇ = f(w, u), w(t) = w0(t),

u(τ) ∈ U, w(τ) ∈W, τ ∈ [t, t+ T]
w(t+ T) ∈ RT ,

(3.1.5)

where the objective function J(w(·), u(·)) is given by:

J(w(·), u(·)) :=
∫ t+T

t

[
(w(τ)−ws)TP (w(τ)−ws)+(u(τ)−us)TQ(u(τ)−us)

]
dτ

+ (w(t+ T)− ws)TS(w(t+ T)− ws). (3.1.6)

46 SCP APPLICATIONS IN OPTIMAL CONTROL

Here P,Q and S are given symmetric positive definite weighting matrices, and
(ws, us) is a steady state of the dynamics (3.1.4). The control variables are
bounded by lower and upper bounds, while some state variables are also bounded
and the others are unconstrained. Consequently, W and U are boxes in Rnw
and Rnu , respectively, but W is not necessarily bounded. The terminal region
RT is a control-invariant ellipsoidal set centered at ws of radius r > 0 and
scaling matrix S, i.e.:

RT :=
{
w ∈ Rnw | (w − ws)TS(w − ws) ≤ r

}
. (3.1.7)

To compute matrix S and the radius r in (3.1.7) the procedure proposed in
[40] can be used. In [104] it has been shown that the receding horizon control
formulation (3.1.5) ensures the stability of the closed-loop system under mild
assumptions. Therefore, the aim of this example is to track the steady state of
the system and to ensure the stability of the system by satisfying the terminal
constraint along the moving horizon. To have a more realistic simulation we
added a disturbance to the input flow qin at the beginning of the reach R1 and
the tributary flow qtributary.

The matrices P and Q have been set to:

P := diag
(0.01

(ws)2
i + 1 : 1 ≤ i ≤ nw

)
, Q := diag

(4
(ul + ub)2

i + 1 : 1 ≤ i ≤ nu
)
,

where ul and ub are the lower and upper bound of the control input u,
respectively.

A short description of the multiple shooting method

We briefly describe the multiple shooting formulation [27] which we use to
discretize the continuous time problem (3.1.5). The time horizon [t, t + T]
of T = 4 hours is discretized into Hp = 16 shooting intervals with ∆τ = 15
minutes such that τ0 = t and τi+1 := τi + ∆τ (i = 0, . . . ,Hp − 1). The control
u(·) is parametrized by using a piecewise constant function u(τ) = ui for
τi ≤ τ ≤ τi + ∆τ (i = 0, . . . ,Hp − 1).

Let us introduce Hp + 1 shooting node variables si (i = 0, . . . ,Hp). Then, by
integrating the dynamic system ẇ = f(w, u) in each interval [τi, τi + ∆τ], the
continuous dynamic (3.1.4) is transformed into the nonlinear equality constraints
of the form:

g(x) +Mξ :=


s0 − ξ

w(s0, u0)− s1
. . .

w(sHp−1, uHp−1)− sHp

 = 0. (3.1.8)

NMPC OF A HYDRO POWER PLANT 47

Here, vector x combines all the controls and shooting node variables ui and
si as x := (sT0 , uT0 , . . . , sTHp−1, u

T
Hp−1, s

T
Hp

)T , ξ is the initial state w0(t) which is
considered as a parameter, and w(si, ui) is the result of the integration of the
dynamics from τi to τi + ∆τ where we set u(τ) = ui and w(τi) = si.

The objective function (3.1.6) is approximated by:

f(x) :=
Hp−1∑
i=0

[
(si − ws)TP (si − ws) + (ui − us)TQ(ui − us)

]
(3.1.9)

+ (sHp − ws)TS(sHp − ws),

while the constraints are imposed only at τ = τi, the beginning of the intervals,
as:

si ∈W, ui ∈ U, sHp ∈ RT , (i = 0, . . . ,Hp − 1). (3.1.10)

If we define Ω := UHp × (WHp × RT) ⊂ Rnx then Ω is convex. Moreover,
the objective function (3.1.9) is convex quadratic. Therefore, the resulting
optimization problem is indeed of the form P(ξ). Note that Ω is not a box but
a curved convex set due to RT .

The nonlinear program to be solved at every sampling time has 4563 decision
variables and 4403 equality constraints. We note that the equality constraint
functions and their derivatives are expensive to evaluate due to the ODE
integration.

Numerical simulation

Before presenting the simulation results, we give some details on the
implementation. To evaluate the performance of the methods proposed in
this section we implemented the following algorithms:

• Full-NMPC – the nonlinear program obtained by multiple shooting is
solved at every sampling time to convergence by several SCP iterations.

• PCSCP – the implementation of Algorithm 2.3.1 using the exact Jacobian
matrix of g.

• APCSCP – the implementation of Algorithm 2.3.1 with approximated
Jacobian of g. Matrix Ak is fixed at Ak = g′(x0) for all k ≥ 0, where x0

is approximately computed off-line by performing the SCP algorithm (the
exact variant of Algorithm 2.5.1) to solve the nonlinear programming P(ξ)
with ξ = ξ0 = w0(t).

48 SCP APPLICATIONS IN OPTIMAL CONTROL

• RTGN – the solution of the nonlinear program is approximated by solving
a quadratic program obtained by linearizing the dynamics and the terminal
constraint sHp ∈ RT . The exact Jacobian g′(·) of g is used. This method
can be referred to as a classical real-time iteration [53] based on the
constrained Gauss-Newton method [27, 48].

To compute the control-invariant set RT a mixed Matlab and C++ code has
been used. The computed value of r is 1.687836, while the matrix S is dense,
symmetric and positive definite.

The quadratic programs (QPs) and the quadratically constrained quadratic
programming problems (QCQPs) arising in the algorithms we implemented can
be efficiently solved by means of interior point or other methods [30, 142]. In
our implementation, we used the commercial solver CPLEX which can deal with
both types of problems.

All the tests have been implemented in C++ running on a 16 cores 2.7GHz
Intel®Xeon CPUs workstation with 12 GB of RAM. We used CasADi, an open
source C++ package [5] which implements automatic differentiation to calculate
the derivatives of the functions and offers an interface to CVODES from the
Sundials package [169] to integrate the ordinary differential equations and
compute the sensitivities. The integration has been parallelized by using OpenMP.

In the full-NMPC algorithm we performed at most 5 SCP iterations for each
time interval. We stopped the SCP algorithm when the relative infinity-norm
of the search direction as well as of the feasibility gap reached the tolerance
ε = 10−3. To have a fair comparison of the different methods, the starting point
x0 of the PCSCP, APCSCP and RTGN algorithms has been set to the solution
of the first full-NMPC iteration.

The disturbances on the flows qin and qtributary were generated randomly and
varying from 0 to 30 and 0 to 10, respectively. All the simulations were perturbed
with the same disturbance scenario.

We simulated the algorithms for Hp = 30 time intervals. The average
computational time required by the four methods is summarized in the first part
of Table 3.1. Here, AvEvalTime is the average time in seconds needed to evaluate
the function g and its Jacobian; AvSolTime is the average time for solving the
QP or QCQP problems; AvAdjTime is the average time for evaluating the
adjoint direction g′(xk)T yk in Algorithm 2.3.1; Total corresponds to the sum
of the previous terms and some preparation time. On average, the full-NMPC
algorithm needed 3.32 iterations to converge to a solution.

The second part of Table 3.1 represents the minimum and maximum time
corresponding to the evaluation of the function and its Jacobian, the solution of

NMPC OF A HYDRO POWER PLANT 49

Table 3.1: The average computational time of four methods

Methods AvEvalTime[s] AvSolTime[s] AvAdjDirTime[s] Total[s]
Full-NMPC 219.655 (82.43%) 46.804 (17.56%) - 266.483
PCSCP 57.724 (89.23%) 7.627 (10.76%) - 64.690
RTGN 58.095 (95.85%) 2.511 (4.14%) - 60.608
APCSCP 0.443 (4.73%) 8.512 (78.90%) 1.527 (16.31%) 9.364
Methods [min, max] [min, max] [min, max] [min, max]
Full-NMPC [164.884, 302.288] [13.489, 114.899] - [179.664, 397.861]
PCSCP [52.162, 70.776] [4.427, 15.476] - [59.881, 86.258]
RTGN [52.971, 68.021] [2.265, 2.943] - [55.680, 70.333]
APCSCP [0.402, 0.596] [4.806, 13.110] [1.331, 1.862] [5.323, 14.153]

the subproblems, the calculation of the adjoint derivatives and the total time.

0 0.5 1 1.5 2 2.5

x 10
4

9.88

9.9

9.92

9.94

9.96

9.98

10

time [s]

q
T

1

 [
m

/s
]

0 0.5 1 1.5 2 2.5

x 10
4

−7

−6

−5

−4

−3

−2

−1

0

1
x 10

−3

time [s]

q
T

2

 [
m

/s
]

0 0.5 1 1.5 2 2.5

x 10
4

9.95

9.96

9.97

9.98

9.99

10

time [s]

q
C

1

 [
m

/s
]

0 0.5 1 1.5 2 2.5

x 10
4

−5

0

5

10

15

x 10
−4

time [s]

q
C

2

 [
m

/s
]

PCSCP

APCSCP

RTGN

Full−NMPC
u

ss

Figure 3.2: The controller profiles qT1 , qC1 , qT2 and qC1 .

It can be seen from Table 3.1 that evaluating the function and its Jacobian
matrix costs approximately 82% to 96% of the total time. On the other hand,
solving a QCQP problem is approximately 2 − 5 times more expensive than
solving a QP problem. The computationally expensive step at every iteration is
the integration of the dynamics and its linearization. The average computational

50 SCP APPLICATIONS IN OPTIMAL CONTROL

0 0.5 1 1.5 2 2.5

x 10
4

198

200

202

204

time [s]

q
R

1

 [
m

/s
]

0 0.5 1 1.5 2 2.5

x 10
4

204

206

208

210

212

time [s]

q
R

2

 [
m

/s
]

0 0.5 1 1.5 2 2.5 3

x 10
4

232

234

236

238

240

242

time [s]

q
R

3

 [
m

/s
]

0 0.5 1 1.5 2 2.5

x 10
4

230

235

240

time [s]

q
R

4

 [
m

/s
]

0 0.5 1 1.5 2 2.5

x 10
4

235

240

245

250

time [s]

q
R

5

 [
m

/s
]

0 0.5 1 1.5 2 2.5

x 10
4

230

235

240

245

250

time [s]

q
R

6

 [
m

/s
]

PCSCP

APCSCP

RTGN

Full−NMPC
u

ss

Figure 3.3: The controller profiles of qR1 , . . . , qR6 .

time of PCSCP and RTGN is similar, while the time consumed in APCSCP is
approximately six times less than PCSCP.

The closed-loop control profiles of the simulation are illustrated in Figures 3.2
and 3.3. Here, the first figure shows the flows in the turbines and the ducts of
lakes L1 and L2, while the second one plots the flows to be controlled in the
reaches Ri (i = 1, . . . , 6). We can observe that the control profiles achieved by
PCSCP as well as APCSCP are close to the profiles obtained by Full-NMPC,
while the results from RTGN oscillate in the first intervals due to the violation
of the terminal constraint. The terminal constraint in the PCSCP was active in
many iterations.

NMPC OF A HYDRO POWER PLANT 51

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

Time horizon [k]

R
e
la

ti
v
e
 F

e
a
s
ib

ili
ty

 G
a
p

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

Time horizon [k]

R
e
la

ti
v
e
 O

p
ti
m

a
lit

y
 G

a
p

PCSCP

APCSCP

RTGN

Full−NMPC

PCSCP

APCSCP

RTGN

Full−NMPC

Figure 3.4: The relative feasibility and optimality gaps of PCSCP, APCSCP,
RTGN and Full-NMPC.

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time horizon [k]

T
he

 r
el

at
iv

e
so

lu
tio

n
di

ffe
re

nc
es

PCSCP

APCSCP

RTGN

Figure 3.5: The relative differences between the approximate solution of Full-
NMPC and PCSCP, APCSCP and RTGN.

Figure 3.4 shows the relative feasibility and optimality gaps of the four methods,
where:

Realative Feasibility Gap :=
∥∥g(xk)+Mξk+1

∥∥
∞ /max{1.0,

∥∥g(x0)+Mξ0
∥∥
∞}

and

Relative Optimality Gap :=
∥∥∇xL̃(xk, λk)

∥∥
∞ /max{1.0,

∥∥∇f(x0)
∥∥
∞},

52 SCP APPLICATIONS IN OPTIMAL CONTROL

with L̃ being the “full” Lagrange function of the optimization problem obtained
from P(ξ) by fixing ξ at ξ = ξk+1. While the relative optimality gaps vary in
the range [0.01, 0.05] the feasibility gaps in PCSCP and Full-NMPC are smaller
than in APCSCP and RTGN. The relative differences between the approximate
solution of Full-NMPC and the approximate solutions of three other methods,

The relative solution differences :=
∥∥(xk−xkfull−nmpc)./max{

∣∣xkfull−nmpc
∣∣ , 1}∥∥∞ ,

are plotted in Figure 3.5. These quantities in PCSCP and APCSCP are
smaller than in RTGN. This happens because the linearization of the quadratic
constraint can not adequately capture the shape of the terminal constraint
sHp ∈ RT . The relative solution differences in APCSCP are as good as in
PCSCP.

3.2 Time optimal trajectory planning problem

Time optimal control problems with geometric path appear frequently in
mechanical engineering and industrial applications of robotic manipulators [2, 41,
155, 172, 173, 209]. In this section, we first propose a simple mathematical model
for a time optimal trajectory planning problem of a car motion. Then, we show
how to solve this optimal control problem by applying a direct transcription
and Algorithm 2.5.1 proposed in the previous chapter.

Mathematically, based on a given reference path parameterization in a path
coordinate system, the dynamic system of the car motion that we consider
in this section is expressed as a differential-algebraic equation (DAE) with
respect to pseudo time. The differential part of the dynamic system is linear
while the algebraic part is nonlinear. The time optimal problem based on this
dynamic system is described as an optimal control problem. Then, by a change
of variables, the objective function of the later problem is transformed into a
convex function [41, 155, 209] and the whole problem is again reformulated
as an optimal control problem in the path coordinate system. To solve this
problem, a direct transcription method is applied to transform it into a nonlinear
optimization problem. Fortunately, this problem preserves the convexity of the
objective function and the “near linearity” of the constraints. Then Algorithm
2.5.1 in Chapter 2 is applied to solve the resulting problem. Note that if SQP
methods or IP methods are applied directly, they do not take into account
the structure of the last problem. Therefore, we apply Algorithm 2.5.1 which
exploits the specific structure of the problem and then uses freely available
software [81, 124, 180, 204] for solving the convex subproblems. The numerical
results show that Algorithm 2.5.1 requires few iterations to reach an optimal
solution. In principle, our approach in this section can be extended to the time

TIME OPTIMAL TRAJECTORY PLANNING PROBLEM 53

optimal trajectory planning for robot control problems [155, 209] with a freedom
to choose the geometric path.

Problem formulation

We consider a motion of a car along a given road shown in Figure 3.6. The
car moves along the road based on a reference trajectory from A to B with the
width fixed at 2bmax. Suppose that we allow the car to deviate from both sides
of the reference trajectory but keep moving inside the road. The aim is to find

B

Reference Trajectory r0(s)

Actual Trajectory r(s)

 A

n0(s)

bmax

 r0(s)

 r (s)

Figure 3.6: The motion of a car along a given path.
a control trajectory to steer the car from A to B in minimum time.

In order to formulate this problem, we consider a given path r(s) := (x(s), y(s))
of the car compounded by two components x(s) and y(s) in the Cartesian
coordinate system, where s is a scalar path coordinate (i.e. the arc length s).
Let r0(s) := (x0(s), y0(s)) represent the reference trajectory of the road. The
actual position of the car is expressed by:

r(s) = r0(s) + b(s)n0(s), (3.2.1)

where n0(s) is the normal vector of r0(s) and b(s) is the deviation from the
reference trajectory. The path coordinate b(s) determines the spatial geometry
of the path, whereas the trajectory’s time dependence follows from the relation
s(t). Without loss of generality, we assume that the trajectory starts at t = 0
and ends at t = T such that s(0) = 0 ≤ s(t) ≤ s(T) = 1. By using the chain rule,
the velocities v(s) and the accelerations a(s) of the motion can be expressed as:

v(s) = ṙ(s) = r′(s)ṡ, a(s) = r̈(s) = r′(s)s̈+ r′′(s)ṡ2, (3.2.2)

where ṡ = ds
dt , s̈ = d2s

dt2 , r
′(s) = ∂r(s)

∂s and r′′(s) = ∂2r(s)
∂s2 . Taking the first and

the second order derivatives with respect to s in (3.2.1) and using the same

54 SCP APPLICATIONS IN OPTIMAL CONTROL

notation as above, we get:

r′(s) = r′0(s) + b(s)n′0(s) + b′(s)n0(s),
(3.2.3)

r′′(s) = r′′0 (s) + b(s)n′′0(s) + 2b′(s)n′0(s) + b′′(s)n0(s).

Substituting (3.2.3) into the last term of (3.2.2), it implies:

a(s) = [r′0(s) + b(s)n′0(s) + b′(s)n0(s)]s̈

+ [r′′0 (s) + b(s)n′′0(s) + 2b′(s)n′0(s) + b′′(s)n0(s)]ṡ2. (3.2.4)

We assume that the acceleration is controlled by a driver and can vary in four
directions (forward, backward, left and right) up to a given limit. More precisely,
we have:

a ≤ D(s)a(s) ≤ ā, (3.2.5)
where a = (at, an) and ā = (āt, ān) are the lower and the upper bounds of the
acceleration a with respect to the two directions and D(s) :=

[
r′(s)T /‖r′(s)‖

n(s)T

]
is

the normalized matrix.

A time optimal trajectory planning problem minimizes the time T of the car
motion from A to B. By using the same technique as in [155, 209] we can write:

T =
∫ T

0
dt =

∫ s(T)

s(0)

ds

ṡ
. (3.2.6)

If we denote e(s) := s̈ and f(s) := ṡ2 then, by the chain rule, we have:

ḟ(s) = f ′(s)ṡ = 2ṡs̈ = 2e(s)ṡ. (3.2.7)

By assumption that ṡ > 0 almost everywhere, it follows from (3.2.7) that:

f ′(s) = 2e(s), (3.2.8)

For notational simplicity, we denote by p0(s) := r′0(s), p1(s) := n′0(s), p2(s) :=
n0(s), q0(s) := r′′0 (s) and q1(s) := n′′0(s). Then the acceleration a(s) in (3.2.4)
is expressed as follows:

a(s) = [p0(s) + b(s)p1(s) + b′(s)p2(s)]s̈
(3.2.9)

+ [q0(s) + b(s)q1(s) + 2b′(s)p1(s) + b′′(s)p2(s)]ṡ2.

By introducing new variables ã(s) := D(s)a(s), c(s) := b′(s) and d(s) := c′(s)
and substituting them into (3.2.9) and (3.2.6), we obtain the following optimal

TIME OPTIMAL TRAJECTORY PLANNING PROBLEM 55

control problem:

min
a(·),b(·),c(·),d(·),e(·),f(·)

∫ 1

0

ds√
f(s)

s.t. ã(s) = D(s)[p0(s) + b(s)p1(s) + c(s)p2(s)]e(s)

+D(s)[q0(s) + b(s)q1(s) + 2c(s)p1(s) + d(s)p2(s)]f(s)

b′(s) = c(s), c′(s) = d(s), f ′(s) = 2e(s), (3.2.10)

b(0) = b0, b(1) = bT , f(0) = ṡ2
0, f(1) = ṡ2

T ,

f(s) ≥ 0, −bmax ≤ b(s) ≤ bmax, a ≤ ã(s) ≤ ā,

for all s ∈ [0, 1]. The notation b0 and bT present the starting and finishing
positions of the car, respectively. In most cases, ṡ0 and ṡT can be set to zero.

Note that (3.2.10) is an optimal control problem. Here, the dynamic system is a
differential algebraic equation system (DAE) of pseudo time s, three differential
states b, c and f , one two-dimensional algebraic state ã and two inputs e and d.

As a particular case, we show that if bmax = 0 then problem (3.2.10) turns out
to be convex [209].
Lemma 3.2.1. If bmax = 0 then problem (3.2.10) is convex.

Proof. Note that the dynamic system part and the constraints from the fourth
to the sixth lines of problem (3.2.10) are linear. If bmax = 0 then it follows
from the last line of (3.2.10) that b(s) = 0 for all s ∈ [0, 1]. Using the fourth
and fifth lines we have c(s) = 0 which implies d(s) = 0 for s ∈ [0, 1]. From the
definition of D(s), it is easy to show that D(s) is independent of e(·) and f(·).
Substituting b(s) = 0, c(s) = 0, d(s) = 0 and D(s) into the first constraint we
obtain ã(s) = D(s)p0(s)e(s) +D(s)q0(s)f(s) which is linear.

Numerical solution

We first transform the optimal control problem (3.2.10) into a nonlinear
programming problem. Then we show how to apply Algorithm 2.5.1 in Chapter
2 to solve the resulting problem.

56 SCP APPLICATIONS IN OPTIMAL CONTROL

Direct transcription for optimal control and condensing

In order to transform the optimal control problem (3.2.10) into a finite
dimensional optimization problem, we first discretize the pseudo-time interval
[0, 1] in the path coordinate s by 0 = s0 < s1 < · · · < sN = 1, with N + 1 grid
points sk. Then, we parameterize the controls d(·) and e(·) by the piecewise
constant functions d̂ and ê such that:

d̂(s) = dk := d(sk), ê(s) = ek := e(sk), ∀s ∈ [sk, sk+1), 0 ≤ k ≤ N − 1.

By integrating the differential part of the dynamic systems of (3.2.10), we
obtain a discretization of the state variables b, c and f as ck+1/2 := ĉ(sk+1/2) =
(ck + ck+1)/2, bk+1/2 := b̂(sk+1/2) = bk + ck∆sk/2 + dk∆s2

k/8 and fk+1/2 :=
f̂(sk+1/2) = (fk + fk+1)/2. The function ã(·) is evaluated at the middle points
sk+1/2 = (sk + sk+1)/2 of [sk, sk+1] for all k = 0, . . . , N − 1 which means
that ãk := ã(sk+1/2). All the coefficient functions p0, p1, p2, q0 and q1 and
the normalized matrix mapping D are evaluated at the middle points sk+1/2
and their values denote by pk0 , pk1 , pk2 , qk0 , qk1 and Dk for all k = 0, . . . , N − 1,
respectively.

Next, we approximate the objective function J(·) by:

J(ã, b, c, d, e, f) :=
∫ 1

0

ds√
f(s)

≈
N−1∑
k=0

2∆sk√
fk +

√
fk+1

.

Put things together, we finally obtain the following nonlinear program:

min
ã,b,c,d,e,f

Ĵ(ã, b, c, d, e, f) :=
N−1∑
k=0

2∆sk√
fk +

√
fk+1

s.t. ãk = Dk[pk0 + pk1b
k+1/2 + pk2c

k+1/2]ek

+Dk[qk0 + qk1 b
k+1/2 + 2pk1ck+1/2 + pk2d

k]fk+1/2,

bk+1 − bk = ∆skck + 1
2∆s2

kd
k, (3.2.11)

ck+1 − ck = ∆skdk, fk+1 − fk = 2∆skek,

f0 = ṡ2
0, f

N = ṡ2
T , b0 = b0, b

N = bT ,

fk ≥ 0, −bmax ≤ bk ≤ bmax, akmin ≤ ãk ≤ akmax,

for all k = 0, . . . , N − 1.

TIME OPTIMAL TRAJECTORY PLANNING PROBLEM 57

Let us introduce a new vector z := (ã0, ã0
2, . . . , ã

N−1
1 , ãN−1

2 , . . . , f0, . . . , fN)T in
R7(N+2) and new functions:

F (z) :=
N−1∑
k=0

2∆sk√
fk +

√
fk+1

,

and G(z) := (G0(z)T , G1(z)T , . . . , GN−1(z)T)T where:

Gk(z) := Dk[pk0 + pk1b
k+1/2 + pk2c

k+1/2]ek (3.2.12)

+Dk[qk0 + qk1 b
k+1/2 + 2pk1ck+1/2 + pk2d

k]fk+1/2 − ãk.

We also define Ω a subset in R7(N+2) which consists of all the linear constraints
of (3.2.11). Then, problem (3.2.11) can be rewritten in a short form:{

min
z∈R7(N+2)

F (z)

s.t. G(z) = 0, z ∈ Ω.

Note that the objective function F (z) and the constraint set Ω of problem
(3.2.11) is convex, while the equality constraint G(z) = 0 is nonlinear. In
addition, according to Lemma 3.2.1, if b, c and d are fixed then G(z) is linear.

Since the convexity is preserved under any linear transformation, we can
eliminate the variables bk, ck and fk in (3.2.11) to reduce the size of this problem.
Such a technique is called condensing [50]. We introduce new variables ã :=
(ã0

1, ã
0
2, . . . , ã

N−1
1 , ãN−1

2)T , u := (c0, d0, . . . , dN−1)T and e := (e0, . . . , eN−1)T .
Then, using the notation Ḡk for the condensed form of the nonlinear constraints
(3.2.12), after reduction calculations, we obtain the following optimization
problem:

min
ã,u,e

J(e) :=
N−1∑
k=0

2∆sk√
PTk e+ ṡ2

0 +
√
PTk+1e+ ṡ2

0

s.t.



Ḡk(ãk, u, e) = 0, k = 0, . . . , N − 1,
rTu = bT − b0,
qT e = ṡ2

T − ṡ2
0,

P e+ ṡ2
01f ≥ 0,

(−bmax − b0)1b ≤ Nu ≤ (bmax − b0)1b,
a ≤ ãk ≤ ā, k = 0, . . . , N − 1,

(3.2.13)

where J(e) is convex, vectors r and q are given, 1b and 1f are two vectors whose
components are 1, and P and N are two constant matrices.

58 SCP APPLICATIONS IN OPTIMAL CONTROL

If we define w := (aT , uT , eT)T ∈ R4N+1, F (w) := J(e), Ḡ(w) :=
(Ḡ0(ã0, u, e)T , . . . , ḠN−1(ã0, u, e)T)T and the other linear constraints of (3.2.13)
again by Ω then problem (3.2.13) can be rewritten as:{

min
w

F (w)
s.t. G(w) = 0, w ∈ Ω,

(3.2.14)

which collapses to the nonlinear programming problem (P) in Chapter 2. Finally,
we note that using the condensing technique destroys the sparsity of the original
problem.

Convex subproblem as a second order cone program

To apply the SCP method, Algorithm 2.5.1 in Chapter 2, the nonlinear equality
constraint G(w) = 0 of (3.2.14) is linearized at the current iteration wp as:

G′(wp)∆w +G(wp) = 0,

where G′(wp) is the Jacobian of G at wp. We observe that the subproblem
P(zj , Aj , Hj) of (3.2.14) at wp has a special structure that can be reformulated
as a second order cone programming (SOCP) problem, see [209]. Therefore, we
can exploit freely available software such as Sedumi [180] and SDPT3 [204] to
solve the resulting SOCP problem.

The main step of the SOCP transformation is specified as follows. Let us
introduce new slack variables v := (v0, . . . , vN)T and t := (t0, . . . , tN−1)T . Then
the objective function (3.2.13) becomes linear:

J(e, v, t) := 2
N−1∑
k=0

∆sktk,

together with 2N additional second order convex cone constraints of the form:∥∥∥∥[2vk
PTk e+ ṡ2

0 − 1

]∥∥∥∥
2
≤ PTk e+ ṡ2

0 + 1,

∥∥∥∥[2
vk + vk+1 − tk

]∥∥∥∥
2
≤ vk + vk+1 + tk,

for all k = 0, . . . , N − 1. Replacing this objective function and adding these
second order cone constraints into problem P(zj , Aj , Hj) obtained by linearizing
(3.2.14) at wp we obtain an SOCP problem. In our numerical tests below, we
will solve this problem by employing Sedumi [180].

TIME OPTIMAL TRAJECTORY PLANNING PROBLEM 59

Numerical results

Suppose that the reference trajectory r0(s) := (x0(s), y0(s) is given. By a
change of variables, we compute the normal vector of this trajectory as:

n0(s) = 1√
x′0(s)2 + y′0(s)2

(
y′0(s),−x′0(s)

)
:=
(

cos θ(s), sin θ(s)
)
. (3.2.15)

Now, by using the chain rule, it follows from the definition of p0, p1, p2,
q0 and q1 that p0(s) = (x′0(s), y′0(s)), p1(s) = (cos θ(s), sin θ(s))θ′(s), p2(s) =
(sin θ(s),− cos θ(s)), q0(s) = (x′′0(s), y′′0 (s)) and q1(s) = (− sin θ(s), cos θ(s))θ′(s)2+
(cos θ(s), sin θ(s))θ′′(s), whereθ′(s) = x′0(s)y′′0 (s)−x′′0 (s)y′0(s)

x′0(s)2+y′0(s)2 ,

θ′′(s) = x′0y
′′′
0 −x

′′′
0 y
′
0

x′0(s)2+y′0(s)2 − 2(x′0y
′′
0−x

′′
0 y
′
0)(x′0x

′′
0 +y′0y

′′
0)

(x′0(s)2+y′0(s)2)2 .

Algorithm 2.5.1 has been implemented in a Matlab package named scp-cvx
and running on an Intel® Core TM2, Quad-Core Processor Q6600 (2.4GHz)
PC Desktop with 3Gb RAM. We used cvx [81] as a modeling language and
Sedumi [180] as a SOCP solver. In order to ensure the convergence, a back
tracking line-search procedure has been implemented in Algorithm 2.5.1. We
terminated Algorithm 2.5.1 if both the relative feasibility gap and the norm of
the search direction reached 10−6. We chose the number of grid points N := 50
and the parameters a := (−50,−10)T , ā := (10, 10)T , bmax := 1, ṡ0 = ṡT := 0
and b0 = bT := 0. The sampling time was ∆sk = ∆ = (sT − s0)/N := 1/N for
all k = 0, . . . , N − 1. We test three cases as follows.

Case I: As in [155], we consider the following reference trajectory:{
x0(s) = 50(s− 0.5),
y0(s) = 200s3 − 300s2 + 100s.

(3.2.16)

With this choice, the Algorithm 2.5.1 required 10 iterations and 35 function
evaluations. The results are shown in Figures 3.7 and 3.8. Here, Figure 3.7
presents the actual trajectory of the car which shows that the trajectory touches
the highest bended parts of the trajectory. At the beginning motion, the
trajectory is bended with a relatively big angle due to the low velocity. The
vectors of velocities v(·) and accelerations a(·) of the car motion are shown
in Figure 3.8, where the horizontal axis represents the s-coordinate and the
vertical axis represents the velocities and accelerations in two directions x and
y. The dashed path indicates the velocity or the acceleration along the x-axis
while the dashed-dotted ones are the velocity and acceleration via the y-axis.

60 SCP APPLICATIONS IN OPTIMAL CONTROL

−25 −20 −15 −10 −5 0 5 10 15 20 25

−10

−5

0

5

10

x−coordinate

y−
co

or
di

na
te

Figure 3.7: Actual trajectory of the motion for Case I (red).

0 0.2 0.4 0.6 0.8 1

−40

−20

0

20

40

path coordinate (−)

ac
ce

le
ra

tio
n

(m
/s

2)

a
x

a
y

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

path coordinate (−)

ve
lo

ci
ty

 (m
/s

)

v
x

v
y

Figure 3.8: Velocities and accelerations of the motion in Case I.

Case II: In the second case, we parameterize the reference trajectory as follows:{
x0(s) = 24π(s− 0.5),
y0(s) = 6 sin(4π(s− 0.5)).

Then, the actual trajectory of the car is plotted in Figure 3.9. Similar to Case

−30 −20 −10 0 10 20 30

−6

−4

−2

0

2

4

6

x−coordinate

y−
co

o
rd

in
a

te

Figure 3.9: Actual trajectory based on a sin path for Case II (red).

I, the trajectory is bended at the beginning motion. Figure 3.10 shows the
velocities v(·) and the accelerations a(·) of the car, respectively.

TIME OPTIMAL TRAJECTORY PLANNING PROBLEM 61

0 0.2 0.4 0.6 0.8 1

−5

0

5

10

path coordinate (−)

ve
lo

ci
ty

 (m
/s

)

v
x

v
y

0 0.2 0.4 0.6 0.8 1

−40

−20

0

20

40

path coordinate (−)

ac
ce

le
ra

tio
n

(m
/s

2)

a
x

a
y

Figure 3.10: Velocities and accelerations of the motion in Case II.

Case III: Finally, we choose the following parameterization:{
x0(s) = [20 + 10 cos(4πs)] cos(2πs),
y0(s) = [20 + 10 cos(4πs)] sin(2πs).

Then the actual trajectory of the car is plotted in Figure 3.11. Figure 3.12 shows

−30 −20 −10 0 10 20 30
−15

−10

−5

0

5

10

15

x−coordinate

y−
co

or
di

na
te

Figure 3.11: Actual trajectory of the car motion for Case III (red).

the velocities v(·) and the accelerations a(·) of the car, respectively. The results

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

path coordinate (−)

ve
lo

ci
ty

 (m
/s

)

v
x

v
y

0 0.2 0.4 0.6 0.8 1

−50

0

50

path coordinate (−)

ac
ce

le
ra

tio
n

(m
/s

2)

a

x

a
y

Figure 3.12: The velocities and accelerations of the motion for Case III.
and the performance of Algorithm 2.5.1 for three cases are summarized in Table

62 SCP APPLICATIONS IN OPTIMAL CONTROL

3.2. Here, iter is the number of iterations, fun_eval is the number of function

Table 3.2: The results and performance of Algorithm 2.5.1
Cases I II III

iter 10 8 18
fun_eval. 21 17 36
cpu_time 90.16 83.36 160.81
constr_viol. 1.26× 10−10 5.83× 10−12 1.15× 10−5

obj_val 5.0907 7.3180 10.6223

evaluations, cpu_time is the computational time in seconds, constr_viol is
the constraint violation and obj_val is the objective values. We can see from
this table that the number of iterations required in Algorithm 2.5.1 for these
three cases is relatively small.

Chapter 4

Inner convex approximation
methods for a class of
nonconvex SDP problems

4.1 A short literature review and contribution

Optimization involving matrix constraints has a broad interest and applications
in static state/output feedback controller design, robust stability of systems,
topology optimization and financial applications, see, e.g. [11, 31, 36, 116, 118,
120]. Many problems in these fields can be reformulated as an optimization
problem with linear matrix inequality (LMI) constraints [31, 118]. Those
problems can be solved efficiently and reliably by means of interior point
methods for semidefinite programming (SDP) [11, 146] and efficient open-source
software tools such as Sedumi [180], SDPT3 [204] and SDPA [215]. However,
solving optimization problems involving nonlinear matrix inequality constraints
is still a big challenge in practice. Methods and algorithms for nonlinear matrix
constrained optimization problems are still limited [44, 72, 116].

In control theory, many problems related to the design of a reduced-order
controller can conveniently be reformulated as a feasibility problem or an
optimization problem with bilinear matrix inequality (BMI) constraints by
means of, for instance, Lyapunov’s theory. The BMI constraints make the
problems much more difficult than the LMI ones due to their nonconvexity and
possible nonsmoothness. It was shown in [24] that the optimization problems

63

64 INNER CONVEX APPROXIMATION METHODS FOR NONCONVEX SDP

involving BMI are NP-hard. Several approaches for solving optimization
problems with BMI constraints have been proposed. For instance, Goh et
al [76] considered problems in robust control by means of BMI optimization
by using global optimization methods. Hol et al in [99] proposed to use a
sum-of-squares approach to fixed order H-infinity synthesis problems. Apkarian
and Tuan [7] proposed local and global methods for solving BMIs which were
also based on global optimization techniques. These authors further considered
these problems by proposing parametric formulations and difference of two
convex functions (DC) programming approaches. A similar approach can be
found in [1]. However, finding a global optimum for an optimization problem
with BMI constraints is in general impractical and global optimization methods
are usually recommended only for low dimensional problems.

Alternatively, sequential semidefinite programming (SSDP) methods for
nonlinear SDP were considered by Fares et al in [65]. These methods were
applied to solve many problems in robust control. Thevenet et al [186] studied
spectral SDP methods for solving problems involving BMIs arising in controller
design. Another approach was based on the fact that the problems with BMI
constraints can be reformulated as problems with LMI constraints coupled with
additional rank constraints. In [150] Orsi et al developed a Newton-like method
for solving problems of this type.

In this chapter, we propose two local optimization methods for solving a class
of nonconvex semidefinite programming problems. In particular, these methods
can be applied to solve optimization problems with BMI constraints.

Contribution of Chapter 4. The contribution of this chapter consists of the
following three points:

a) We propose a local optimization algorithm for finding stationary points of
a class of nonconvex semidefinite programming problems. This algorithm
can be viewed as a generalization of classical inner convex approximation
methods [9, 127]. A variant of this approach is derived which we call the
generalized convex-concave decomposition algorithm. The later algorithm
can be considered as a generalization of the DC algorithm (DCA) studied
in [156, 177, 190] for scalar functionals.

b) We prove the convergence of both algorithms to a stationary point of
the original problem under the standard assumptions which are usually
required in nonconvex semidefinite programming.

c) As a particular case, we show that these algorithms can be applied
to solve optimization problems with BMI constraints by providing

PROBLEM STATEMENT AND OPTIMALITY CONDITION 65

some formulations to build an overestimate as well as a convex-concave
decomposition for given BMI constraints.

We note that both algorithms developed in this chapter are not only a technical
extension of existing methods for scalar functions because many characterizations
of standard nonlinear programming are no longer preserved in nonlinear
semidefinite programming, see, e.g. [170, 181]. Moreover, converting a nonlinear
semidefinite programming problem into a standard nonlinear programming one
usually requires some spectral functions which are related to the eigenvalues of
matrix-valued mappings. The resulting problem is in general nonconvex and
nonsmooth, see, e.g. [34]. In addition, the algorithms are modified by using a
regularization technique to ensure the strict descent of the objective function.
The advantages of these algorithms are that they are very simple to implement
by employing available semidefinite programming software tools [180, 204, 215]
and no globalization strategy such as line-search or filtering procedures is needed.
The second method still works in practice for nonsmooth optimization problems,
where the objective function and the concave parts are only subdifferentiable,
but not necessarily differentiable. Note that this algorithm is different from the
standard DC method in [156, 177, 190] since we work directly with positive
semidefinite matrix inequality constraints instead of transforming them into
DC representations as in [1, 7].

Outline of Chapter 4. This chapter is organized as follows. In Section 4.2, after
recalling some concepts in semidefinite programming, we present the problem
formulation and its optimality condition. Section 4.3 considers a generalized
inner convex approximation method and investigates its convergence. As a
variant of the generalized inner convex approximation method, a generalized
convex-concave decomposition algorithm is also studied in this section. The
convergence of this algorithm is also proved under standard assumptions.
Besides, we also provide some convex-concave decompositions for a given BMI
mapping which will be used in the next chapter. We end this chapter with some
conclusion.

4.2 Problem statement and optimality condition

Generalized convexity

Let us recall the following concepts which will be used in the sequel. For
given matrices X and Y in Sp, the relation X � Y (resp., X � Y) means that

66 INNER CONVEX APPROXIMATION METHODS FOR NONCONVEX SDP

X−Y ∈ Sp+ (resp., Y −X ∈ Sp+) andX � Y (resp., X ≺ Y) meansX−Y ∈ Sp++
(resp., Y −X ∈ Sp++). The notation X ◦ Y := trace(XTY) denotes an inner
product of two matrices X and Y defined on Sp, where trace(Z) is the trace
of matrix Z.
Definition 4.2.1 ([170]). A matrix-valued mapping G : Rn → Sp is said to be
positive semidefinite convex (psd-convex) on a convex subset Ω ⊆ Rn if for all
t ∈ [0, 1] and x, y ∈ Ω, one has:

G(tx+ (1− t)y) � tG(x) + (1− t)G(y). (4.2.1)

If (4.2.1) holds true for ≺ instead of � for t ∈ (0, 1) then G is said to be strictly
psd-convex on Ω. Alternatively, if we replace � in (4.2.1) by � then G is said
to be psd-concave on Ω.

It is obvious that any convex function f : Rn → R is psd-convex with p = 1.

The derivative of a matrix-valued mapping G at x is a linear mapping DG from
Rn to Rp×p which is defined by:

DG(x)h :=
n∑
i=1

hi
∂G

∂xi
(x), ∀h ∈ Rn.

For a given convex set Ω ∈ Rn, the matrix-valued mapping G is said to be
differentiable on a subset Ω if its derivative DG(x) exists at every x ∈ Ω.
The definitions of the second order derivatives of matrix-valued mappings can
be found, e.g., in [170]. Let A : Rn → Sp be a linear mapping defined as
Ax :=

∑n
i=1 xiAi, where Ai ∈ Sp for i = 1, . . . , n. The adjoint operator of A,

A∗, is defined as A∗Z := (A1 ◦ Z,A2 ◦ Z, · · · , An ◦ Z)T for any Z ∈ Sp.
Lemma 4.2.1.

a) A matrix-valued mapping G is psd-convex on Ω if and only if for any
v ∈ Rp the function ϕ(x) := vTG(x)v is convex on Ω.

b) A mapping G is psd-convex on Ω if and only if for all x and y in Ω, one
has:

G(y)−G(x) � DG(x)(y − x). (4.2.2)

Proof. The proof of the statement a) can be found in [170]. We prove b). Let
ϕ(x) = vTG(x)v for any v ∈ Rp. If G is psd-convex then ϕ is convex. We have
ϕ(y)−ϕ(x) ≥ ∇ϕ(x)T (y−x). Now, ∇ϕ(x)T (y−x) =

∑n
i=1(yi−xi)vT ∂G

∂xi
(x)v =

vT [DG(x)(y−x)]v. Hence, vT [G(y)−G(x)− DG(x)(y − x)] v ≥ 0 for all v. We
conclude that (4.2.2) holds. Conversely, if (4.2.2) holds then, for any v, we have
vT [G(y)−G(x)− DG(x)(y − x)] v ≥ 0, which is equivalent to ϕ(y) − ϕ(x) ≥

PROBLEM STATEMENT AND OPTIMALITY CONDITION 67

∇ϕ(x)T (y − x). Thus ϕ is convex. By virtue of a), the mapping G is psd-
convex.

As a generalization of DC functions, we define a generalized convex-concave
decomposition in the symmetric positive semidefinite cone as follows.
Definition 4.2.2. A matrix-valued mapping F : Rn → Sp is said to be a
psd-convex-concave mapping if F can be represented as a difference of two
psd-convex mappings, i.e. F (x) = G(x)−H(x), where G and H are psd-convex.
The pair (H,G) is called a psd-DC (or psd-convex-concave) decomposition of F .

Instead of using the vector x as a decision variable, we can use the matrix X
as a matrix variable in Rm×n. Note that any matrix X can be considered
as an m × n-column vector by vectorizing with respect to its columns, i.e.
x = vec(X) := (X11, X21, . . . , Xmn)T . The inverse mapping of vec is called
mat. Since vec andmat are linear operators, the psd-convexity is still preserved
under these operators.

Let us consider a bilinear matrix form:

F (X,Y) := XTY + Y TX. (4.2.3)

By using the Kronecker product, we can write F as vec(F (X,Y)) = (Ix ⊗
XT)vec(Y) + (Iy ⊗ Y T)vec(X) = (

∑
i,j xiyj), where Ix and Iy are two

appropriate identity matrices, ⊗ denotes the Kronecker product. Hence, the
vectorization of F (X,Y) is indeed a bilinear form of two vectors x := vec(X)
and y := vec(Y).

Example 4.2.1.(Psd-convex-concave decompositions of BMIs) We consider
a bilinear matrix-valued mapping b(X,Y) := XTY + Y TX. The following
expression represents three different psd-convex-concave decompositions of b(·):

b(X,Y) = (X + Y)T (X + Y)− (XTX + Y TY)

= XTX + Y TY − (X − Y)T (X − Y) (4.2.4)

= 1
2[(X + Y)T (X + Y)− (X − Y)T (X − Y)].

We will show in Lemma 5.2.1 in the next chapter that the matrix-valued
mappings (X+Y)T (X+Y), XTX, Y TY and (X−Y)T (X−Y) are psd-convex.
Intuitively, we can see that the first decomposition has a “strong curvature”
on the second term, while the second and the third decompositions have “less
curvature” on the second term due to the compensation between X and Y .
We will later see in the next chapter that less curvature in the concave part is
beneficial for the algorithms of this chapter. ♦

68 INNER CONVEX APPROXIMATION METHODS FOR NONCONVEX SDP

Note that each given psd-convex-concave mapping may possess many psd-
convex-concave decompositions. Moreover, we can write F (x) = G(x)−H(x) =
[G(x)+K(x)]− [H(x)+K(x)] for any symmetric positive definite matrix-valued
mapping K.

Optimization involving matrix inequality constraints

In this chapter we consider the following nonconvex semidefinite programming
problem: 

min
x∈Rn

f(x)
s.t. Fi(x) � 0, i = 1, . . . ,m,

x ∈ Ω,
(NSDP)

where f : Rn → R is convex, Ω is a nonempty, closed and convex set in Rn

and Fi : Rn → Spi (i = 1, . . . ,m) are nonconvex matrix-valued mappings and
smooth. As a special case, if each matrix-valued mapping Fi is psd-convex-
concave, i.e. Fi(x) = Gi(x)−Hi(x) for i = 1, . . . ,m then the problem (NSDP)
collapses to a nonconvex semidefinite programming problem with psd-convex-
concave constraints of the form:

min
x∈Rn

f(x)
s.t. Gi(x)−Hi(x) � 0, i = 1, . . . ,m,

x ∈ Ω,
(4.2.5)

where the function f and the set Ω are defined as in (NSDP). The problem
(4.2.5) is referred to as a convex optimization problem with psd-convex-concave
matrix inequality constraints.

Note that if Hi is affine for i = 1, . . . ,m then (4.2.5) becomes a convex
semidefinite program.

Throughout this chapter, we assume that all the functions and matrix-valued
mappings are twice differentiable on their domain [170, 186] as stated in
the following assumption. However, this assumption can be reduced to the
subdifferentiability of the objective function and the concave parts of the convex-
concave decompositions of matrix-valued mappings.
Asumption A. 4.2.4. The function f and the matrix-valued mappings Fi
(resp. Gi and Hi) are twice continuously differentiable on their domain for
i = 1, . . . ,m.

GENERALIZED INNER CONVEX APPROXIMATION ALGORITHMS 69

Optimality condition

Let us define L(x,Λ) := f(x) +
∑m
i=1 Λi ◦ Fi(x) the Lagrange function of

(NSDP), where Λi ∈ Sp is the Lagrange multiplier associated with the constraint
Fi(x) � 0 for i = 1, . . . ,m. The generalized KKT condition of (NSDP) is
presented as:  0 ∈ ∇f(x) +

∑m
i=1 DFi(x)∗Λi +NΩ(x),

Fi(x) � 0, Λi � 0,
Fi(x) ◦ Λi = 0, i = 1, . . . ,m.

(4.2.6)

Here, NΩ(x) is the normal cone of Ω at x. A pair (x∗,Λ∗) satisfying (4.2.6) is
called a KKT point, x∗ is called a stationary point and Λ∗ is the corresponding
multiplier of (NSDP). The generalized optimality condition for nonlinear
semidefinite programming can be found in the literature, e.g., [170, 181].

Let us denote by:

D := {x ∈ Ω | Fi(x) � 0, i = 1, . . . ,m} , (4.2.7)

the feasible set of (NSDP) and by ri(D) the relative interior of D which is
defined by:

ri(D) := {x ∈ ri(Ω) | Fi(x) ≺ 0, i = 1, . . . ,m} ,

where ri(Ω) is the set of classical relative interiors of Ω [30].

The following condition is a fundamental assumption in this chapter.
Asumption A.4.2.5. The relative interior ri(D) of D is nonempty.

Note that this assumption is crucial for our methods, because, as we shall
see, the methods require a strictly feasible starting point x̄0 ∈ ri(D). Finding
such a point is in principle not an easy task. However, in many problems, this
assumption is always satisfied. In the next chapter we will propose different
techniques to determine a starting point for some nonconvex sets formed by
BMI constraints.

4.3 Generalized inner convex approximation algo-
rithms

Let us first describe the idea of the inner convex approximation for the scalar
case. Let f : Rn → R be a continuous nonconvex function. A convex function
g(·; y) depending on a parameter y is called a convex overestimate of f(·) w.r.t.

70 INNER CONVEX APPROXIMATION METHODS FOR NONCONVEX SDP

the parameterization y := ψ(x) if g(x, ψ(x)) = f(x) and f(z) ≤ g(z; y) for all
y and z. In this case, we have {z | g(z; y) ≤ 0} ⊆ {z | f(z) ≤ 0}. The idea of
the algorithm is to approximate the nonconvex feasible set of the problem by a
sequence of inner convex approximations and to solve the convex subproblems
formed by these sets to obtain approximate solutions. In the sequel, we shall
generalize this idea from scalar functions to matrix-valued mappings.

Psd-convex overestimate of a matrix-valued mapping

We start by considering a convex overestimate of a scalar function. Then we
generalize the idea to nonconvex matrix-valued mappings.

Example 4.3.1. Let f be a continuously differentiable function such that
its gradient ∇f is Lipschitz continuous with a Lipschitz constant Lf > 0, i.e.
‖∇f(y)−∇f(x)‖ ≤ Lf ‖y − x‖ for all x and y. Then, it is well-known that
|f(z)−f(x)−∇f(x)T (z−x)| ≤ Lf

2 ‖z − x‖
2. Therefore, for any x and z we have

f(z) ≤ g(z;x) with g(z;x) := f(x) +∇f(x)T (z − x) + Lf
2 ‖z − x‖

2. Moreover,
f(x) = g(x;x) for any x. We conclude that g(·;x) is a convex overestimate of f
w.r.t the parameterization y = ψ(x) := x. Now, since f(z) ≤ g(z;x), if we fix
x := x̄ and find a point v such that g(v; x̄) ≤ 0 then f(v) ≤ 0. Consequently if
the set {x | f(x) < 0} is nonempty, we can find a point v such that g(v; x̄) ≤ 0.
The convex set C(x) := {z | g(z;x) ≤ 0} is called an inner convex approximation
of {z | f(z) ≤ 0}. ♦

Example 4.3.2.(see [9]) We consider the function f(x) = x1x2 in R2. The
function g(x; y) = y

2x
2
1 + 1

2yx
2
2 is a convex overestimate of f w.r.t. the

parameterization y = ψ(x) := x1/x2 provided that y > 0. This example
shows that the parameterization ψ is not always the identity. ♦

Let us generalize the convex overestimate concept to matrix-valued mappings.
Definition 4.3.1. Let us consider a psd-nonconvex matrix-valued mapping
F : X ⊆ Rn → Sp. A psd-convex matrix-valued mapping G(·; y) is said to
be a psd-convex overestimate of F w.r.t. the parameterization y := ψ(x) if
G(x;ψ(x)) = F (x) and F (z) � G(z; y) for all x and z in X .

Let us provide two important examples that satisfy Definition 4.3.1.

Example 4.3.3. Let BQ(X,Y) = XTQ−1Y + Y TQ−1X be a bilinear form
with Q = Q1 +Q2, Q1 � 0 and Q2 � 0 arbitrary, where X and Y are two n× p

GENERALIZED INNER CONVEX APPROXIMATION ALGORITHMS 71

matrices. We consider the parametric quadratic form:

QQ(X,Y ; X̄, Ȳ) :=(X−X̄)TQ−1
1 (X−X̄)+(Y −Ȳ)TQ−1

2 (Y −Ȳ)

+X̄TQ−1Y +Ȳ TQ−1X +XTQ−1Ȳ (4.3.1)

+Y TQ−1X̄ − X̄TQ−1Ȳ −Ȳ TQ−1X̄.

One can show that QQ(X,Y ; X̄, Ȳ) is a psd-convex overestimate of BQ(X,Y)
w.r.t. the parameterization ψ(X̄, Ȳ) := (X̄, Ȳ).

Indeed, it is obvious that QQ(X̄, Ȳ ; X̄, Ȳ) = BQ(X̄, Ȳ). We only prove the
second condition in Definition 4.3.1. We consider the expression DQ :=
X̄TQ−1Y +Ȳ TQ−1X+XTQ−1Ȳ +Y TQ−1X̄−X̄TQ−1Ȳ −Ȳ TQX̄−XTQ−1Y −
Y TQ−1X. By rearranging this expression, we can easily show that DQ =
−(X − X̄)TQ−1(Y − Ȳ) − (Y − Ȳ)TQ−1(X − X̄). Now, since Q = Q1 + Q2,
by [13], we can write:

−DQ = (X − X̄)T (Q1 +Q2)−1(Y − Ȳ) + (Y − Ȳ)T (Q1 +Q2)−1(X − X̄)

�(X−X̄)TQ−1
1 (X−X̄)+(Y −Ȳ)TQ−1

2 (Y −Ȳ). (4.3.2)

Note that DQ = QQ−BQ−(X−X̄)TQ−1
1 (X−X̄)+(Y−Ȳ)TQ−1

2 (Y−Ȳ). Therefore,
we have QQ(X,Y ; X̄, Ȳ) � BQ(X,Y) for all X,Y and X̄, Ȳ due to (4.3.2). ♦

Example 4.3.4. Let us consider a psd-convex-concave mapping F (x) :=
G(x)−H(x), where G and H are both psd-convex. Let H be differentiable and
L2(x; x̄) := H(x̄) + DH(x̄)(x − x̄) be the linearization of H at x̄. We define
F (x; x̄) := G(x)− L2(x; x̄). According to Lemma 4.2.1, we have:

−H(x) � −H(x̄)− DH(x̄)(x− x̄), ∀x,

which is equivalent to:

G(x)−H(x) � G(x)−H(x̄)− DH(x̄)(x− x̄), ∀x.

Hence, F (·; x̄) is a psd-convex overestimate of F w.r.t. the parametrization
ψ(x̄) := x̄. ♦
Remark 4.3.1. Example 4.3.3 shows that the “Lipschitz constant” of the
approximating function (4.3.1) is (Q−1

1 , Q−1
2). Moreover, as indicated in

Examples 4.3.3 and 4.3.4 that the psd-convex overestimate of a matrix-valued
inequality constraint is not unique. In practice, it is important to find an
appropriate psd-convex overestimate for this constraint to make the algorithm
perform efficiently. Note that the psd-convex overestimate QQ of BQ in Example
4.3.3 may be less conservative than the convex-concave decomposition since all
the terms in QQ relate to the differences X − X̄ and Y − Ȳ rather than X and
Y .

72 INNER CONVEX APPROXIMATION METHODS FOR NONCONVEX SDP

The algorithms

In this subsection, we present two algorithms. The first algorithm is a generalized
inner convex approximation method for solving (NSDP) and the second one is
a generalized convex-concave decomposition method for solving (4.2.5).

Generalized inner convex approximation algorithm

For each i = 1, . . . ,m, we assume that Gi(·; yi) is an overestimate of Fi with
the parameterization yi = ψi(x). The main step of the algorithm is to solve a
convex semidefinite programming problem formed at the iteration x̄k ∈ Ω by
using inner psd-convex approximations. The convex subproblem is defined as
follows:

min
x

{
fk(x) := f(x) + 1

2 (x− x̄k)TQk(x− x̄k)
}

s.t. Gi(x; ȳki) � 0, i = 1, . . . ,m,
x ∈ Ω.

(CSDP(x̄k))

Here, Qk ∈ Sn+ is given and the second term in the objective function is referred
to as a regularization term; ȳki := ψi(x̄k) is the parameterization of the convex
overestimate Gi of Fi.

Let us define by S(x̄k, Qk) the solution mapping of CSDP(x̄k) depending on
the parameters (x̄k, Qk). Note that the problem CSDP(x̄k) is convex, S(x̄k, Qk)
is multivalued and convex. The feasible set of CSDP(x̄k) is written as:

D(x̄k) :=
{
x ∈ Ω | Gi(x;ψi(x̄k)) � 0, i = 1, . . . ,m

}
. (4.3.3)

The algorithm for solving (NSDP) starts from an initial point x̄0 ∈ ri(D) and
generates a sequence {x̄k}k≥0 by solving a sequence of convex semidefinite
programming subproblems CSDP(x̄k) approximated at x̄k. More precisely, it is
presented in detail as follows:

Algorithm 4.3.1.(Generalized inner convex approximation algorithm).
Initialization. Determine an initial point x̄0 ∈ ri(D). Compute ȳ0

i := ψi(x̄0)
for i = 1, . . . ,m. Choose a regularization matrix Q0 ∈ Sn+.
Iteration. For k = 0, 1, . . . , perform the following steps:

Step 1. For given x̄k, if a given criterion is satisfied then terminate.

Step 2. Solve the convex semidefinite program CSDP(x̄k) to obtain a
solution x̄k+1 and the corresponding Lagrange multiplier Λ̄k+1.

GENERALIZED INNER CONVEX APPROXIMATION ALGORITHMS 73

Step 3. Update ȳk+1
i := ψi(x̄k+1), the regularization matrix Qk+1 ∈ Sn+

(if necessary) and go back to Step 1.

End.

We notice that the stopping criterion at Step 1 of Algorithm 4.3.1 will be specified
in Chapter 5. The Lagrange multiplier is not directly used in Algorithm 4.3.1,
but it may be used to update matrix Qk if necessary.

Convex-concave decomposition algorithm

As a special case, if we use the convex overestimate given in Example 4.3.4,
we obtain a variant of Algorithm 4.3.1. In this case, the convex subproblem
CSDP(x̄k) reduces to the following form:

min
x

{
fk(x) := f(x) + 1

2 (x− x̄k)TQk(x− x̄k
}

s.t. Gi(x)−Hi(x̄k)− DHi(x̄k)(x− x̄k) � 0, i = 1, . . . ,m,
x ∈ Ω.

(4.3.4)

Similar to (4.3.3), the feasible set of this problem becomes:

D(x̄k) :=
{
x ∈ Ω|Gi(x)−Hi(x̄k)−DHi(x̄k)(x−x̄k)�0, i = 1, . . . ,m

}
. (4.3.5)

The generalized convex-concave decomposition algorithm for solving (4.2.5) is
described as follows:

Algorithm 4.3.2.(Generalized convex-concave decomposition algorithm).
Initialization. Determine an initial point x̄0 ∈ ri(D). Choose a regularization
matrix Q0 ∈ Sn+.
Iteration. For k = 0, 1, . . . , perform the following steps:

Step 1: Solve the convex semidefinite program (4.3.4) to obtain a solution
x̄k+1 and the corresponding Lagrange multiplier Λ̄k+1.

Step 2: If
∥∥x̄k+1 − x̄k

∥∥ ≤ ε for a given tolerance ε > 0 then terminate.
Otherwise, update Qk ∈ Sn+ (if necessary) and go back to Step 1.

End.

The following main property of Algorithms 4.3.1 and 4.3.2 makes an
implementation very easy. If the initial point x̄0 belongs to the relative interior of
the feasible set D, i.e. x̄0 ∈ ri(D), then Algorithms 4.3.1 and 4.3.2 each generate
a sequence

{
x̄k
}
which still belongs to D. This means that the sequence

{
x̄k
}
is

74 INNER CONVEX APPROXIMATION METHODS FOR NONCONVEX SDP

feasible. Moreover, the corresponding sequence of the objective values
{
f(x̄k)

}
is nonincreasing. In particular, no line-search procedure is needed to ensure
global convergence. This properties following from the fact that Gi(·;ψi(x̄k))
is an overestimate of Fi. Hence, if the subproblem CSDP(x̄k) (resp. (4.3.4))
has a solution x̄k+1 then it is feasible to (NSDP) (resp. (4.2.5)). Geometrically,
Algorithms 4.3.1 and 4.3.2 can be seen as inner approximation methods.

The main tasks of an implementation of Algorithms 4.3.1 and 4.3.2 consist of:

1. determining an initial point x̄0 ∈ ri(D), and

2. solving the convex semidefinite program CSDP(x̄k) or (4.3.4) repeatedly.

As mentioned before, since D is nonconvex, finding an initial point x̄0 in ri(D)
is, in principle, not an easy task. Nevertheless, in some practical problems, this
can be done by exploiting the special structure of the problem (see Chapter 5
for more details).

To solve the convex subproblem (4.3.4) or CSDP(x̄k), we can either implement
an interior point method and exploit the structure of the problem or transform
it into a standard SDP problem and then make use of available software tools
for SDP [180, 204]. The regularization matrix Qk can be fixed at an appropriate
choice for all iterations, e.g. Qk = ρI, where ρ > 0 is sufficiently small and I is
the identity matrix, or adaptively updated.
Lemma 4.3.1. If x̄k is a solution of CSDP(x̄k) (resp. (4.3.4)) linearized at
x̄k, i.e. x̄k+1 = x̄k, then it is a stationary point of (NSDP) (resp. (4.2.5)).

Proof. It is sufficient to prove the second case with (4.3.4). Suppose that Λ̄k+1

is a multiplier associated with x̄k, substituting x̄k into the generalized KKT
condition (4.3.7) of (4.3.4) we obtain (4.2.6). Thus x̄k is a stationary point of
(4.2.5).

Convergence analysis

We denote by Lf (α) := {x ∈ D | f(x) ≤ α} the lower level (sublevel) set of the
objective function. Let us assume that Gi(·; y) is continuously differentiable in
Lf (f(x̄0)) for any y. We say that the Robinson qualification condition [28] for
CSDP(x̄k) holds at x̄ if:

0 ∈ int(Gi(x̄; ȳki) + DGiF (x̄; ȳki)(Ω− x̄) + Sp+), i = 1, . . . ,m.

GENERALIZED INNER CONVEX APPROXIMATION ALGORITHMS 75

Similarly, we say that the Robinson qualification condition for (4.3.4) holds at
x̄ if:

0 ∈ int(Gi(x̄) + DGi(x̄)−Hi(x̄k)(Ω− x̄) + Sp+), i = 1, . . . ,m.

In order to prove the convergence of Algorithm 4.3.1, we require the following
assumption, which is standard in nonlinear optimization.
Asumption A.4.3.6. The set of KKT points of (NSDP) (resp. (4.2.5)) is
nonempty. For a given y, the matrix-valued mappings Gi(·; y) (resp. Gi(·))
are continuously differentiable on Lf (f(x̄0)) for i = 1, . . . ,m. The convex
programming subproblem CSDP(x̄k) (resp. (4.3.4)) is solvable and the Robinson
qualification condition holds at its solutions.

We first show that the sequence
{
x̄k
}
k≥0 generated by either Algorithm 4.3.1 or

Algorithm 4.3.2 is a strictly descent sequence, i.e. f(x̄k+1) < f(x̄k) for all k ≥ 0.
For a given matrix Q ∈ Sn+ and a vector z, we denote by ‖z‖Q := [zTQz]1/2.
Note that ‖·‖Q is only a norm if Q ∈ Sn++.

Lemma 4.3.2. Let {(x̄k, Λ̄k)}k≥0 be a sequence generated by Algorithm 4.3.1.
Then:

a) The feasible set D(x̄k) ⊆ D for all k ≥ 0.

b) It is a feasible sequence, i.e. {x̄k}k≥0 ⊂ D.

c) x̄k+1 ∈ D(x̄k) ∩ D(x̄k+1).

d) For any k ≥ 0, it holds that:

f(x̄k+1) ≤ f(x̄k)− 1
2
∥∥x̄k+1 − x̄k

∥∥2
Qk
− ρf

2
∥∥x̄k+1 − x̄k

∥∥2
,

where ρf ≥ 0 is the convexity parameter of f .

Proof. For a given x̄k, we have ȳki = ψi(x̄k) and Fi(x) � Gi(x; ȳki) � 0 for i =
1, . . . ,m. Thus if x ∈ D(x̄k) then x ∈ D, the statement a) holds. Consequently,
the sequence

{
x̄k
}
is feasible to (NSDP) which is indeed the statement b). Since

x̄k+1 is a solution of CSDP(x̄k), it shows that x̄k+1 ∈ D(x̄k). Now, we have to
show that it belongs to D(x̄k+1). Indeed, since Gi(x̄k+1, ȳk+1

i) = Fi(x̄k+1) � 0
by Definition 4.3.1 for all i = 1, . . . ,m, we conclude x̄k+1 ∈ D(x̄k+1). The
statement c) is proved. Finally, we prove d). Since x̄k+1 is the optimal solution
of CSDP(x̄k), we have f(x̄k+1) + 1

2
∥∥x̄k+1 − x̄k

∥∥2
Qk
≤ f(x) + 1

2 (x− x̄k)TQk(x−
x̄k)− ρf

2
∥∥x− x̄k+1

∥∥2 for all x ∈ D(x̄k). Moreover, we have x̄k ∈ D(x̄k) due to
c). By substituting x = x̄k in the previous inequality we obtain the estimate d)
of the lemma.

76 INNER CONVEX APPROXIMATION METHODS FOR NONCONVEX SDP

Similar to Lemma 4.3.2, we also obtain the following result.
Lemma 4.3.3. Suppose that

{
(x̄k, Λ̄k)

}
k≥0 is a sequence generated by

Algorithm 4.3.2. Then:

a) The following inequality holds for k ≥ 0:

f(x̄k+1) ≤ f(x̄k)−
∥∥x̄k+1 − x̄k

∥∥2
Qk
− ρf

2
∥∥x̄k+1 − x̄k

∥∥2
2 , (4.3.6)

where ρf is the convexity parameter of f .

b) If there exists at least one constraint i0, i0 ∈ {1, 2, . . . ,m}, to be strictly
feasible at x̄k, i.e. Gi0(x̄k)−Hi0(x̄k) ≺ 0, then f(x̄k+1) < f(x̄k) provided
that Λ̄k+1

i0
� 0.

c) If Qk ∈ Sn++ then ∆x̄k := x̄k+1 − x̄k is a sufficient descent direction of
(4.2.5), i.e. f(x̄k+1)− f(x̄k) ≤ −

∥∥∆x̄k
∥∥2
Qk

< 0 for all k ≥ 0.

Proof. For any matrices A,B ∈ Sp+, we have A ◦ B ≥ 0. From Step 1 of
Algorithm 4.3.2, we have that x̄k+1 is a solution of the convex subproblem
(4.3.4) and Λ̄k+1 is the corresponding multiplier, under Assumption A.4.3.6,
they must satisfy the following generalized Kuhn-Tucker condition:

0 ∈ ∇f(x̄k+1) +Qk(x̄k+1 − x̄k) +
{∑m

i=1 D[Gi(x)

−Hi(x̄k)− DHi(x̄k)(x− x̄k)]|x̄k+1

}∗
Λ̄k+1
i +NΩ(x̄k+1),

Gi(x̄k+1)−Hi(x̄k)− DH(x̄k)(x̄k+1 − x̄k) � 0, Λ̄i � 0,[
Gi(x̄k+1)−Hi(x̄k)− DH(x̄k)(x̄k+1 − x̄k)

]
◦ Λ̄k+1

i = 0.

(4.3.7)

Noting that D
[
Gi(x)−Hi(x̄k)− DHi(x̄k)(x− x̄k)

]
|x=x̄k+1 = DGi(x̄k+1) −

DHi(x̄k) for i = 1, . . .m, it follows from the first line of (4.3.7) and the convexity
of f that:

f(y)− f(x̄k+1) +
{ m∑
i=1

[DGi(x̄k+1)− DHi(x̄k)]∗Λ̄k+1
i

}T
(y − x̄k+1)

≥
{
∇f(x̄k+1) +

m∑
i=1

[DGi(x̄k+1)− DHi(x̄k)]∗Λ̄k+1
i

}T
(y − x̄k+1)

+ρf
2
∥∥y − x̄k+1∥∥2

2 (4.3.8)

≥ ρf
2
∥∥y − x̄k+1∥∥2

2 + (y − x̄k+1)TQk(x̄k − x̄k+1), ∀y ∈ Ω.

GENERALIZED INNER CONVEX APPROXIMATION ALGORITHMS 77

On the other hand, we have:{
[DGi(x̄k+1)− DHi(x̄k)]∗Λ̄k+1

i

}T
(y − x̄k+1)

= Λ̄k+1
i ◦ [DGi(x̄k+1)(y − x̄k+1)− DHi(x̄k)(y − x̄k+1)]. (4.3.9)

Since Gi and Hi are psd-convex, by applying Lemma 4.2.1 we have:

Gi(x̄k)−Gi(x̄k+1) � DGi(x̄k+1)(x̄k − x̄k+1),
and

Hi(x̄k+1)−Hi(x̄k) � DHi(x̄k)(x̄k+1 − x̄k), i = 1, . . . ,m.

Summing up these inequalities we obtain:

Gi(x̄k)−Hi(x̄k)− [Gi(x̄k+1)−Hi(x̄k+1)]

� [DGi(x̄k+1)(x̄k − x̄k+1)− DHi(x̄k)(x̄k − x̄k+1)].

Using the fact that Λ̄k+1
i � 0, the last inequality implies that:

Λ̄k+1
i ◦

{
Gi(x̄k)−Hi(x̄k)− [Gi(x̄k+1)−Hi(x̄k+1)]

}
(4.3.10)

� Λ̄k+1
i ◦ [DGi(x̄k+1)(x̄k − x̄k+1)− DHi(x̄k)(x̄k − x̄k+1)].

Substituting y = x̄k into (4.3.8) and then combining the consequence, (4.3.9),
(4.3.10) and the last line of (4.3.7) to obtain:

f(x̄k)− f(x̄k+1) +
m∑
i=1

Λ̄k+1
i ◦ [Gi(x̄k)−Hi(x̄k)]

(4.3.11)
≥ ρf

2
∥∥x̄k+1 − x̄k

∥∥2
2 +

∥∥x̄k+1 − x̄k
∥∥2
Qk
.

Now, since x̄k is the solution of the convex subproblem (4.3.4) linearized at
x̄k−1. One has Gi(x̄k) − Hi(x̄k) � 0. Moreover, since Λ̄k+1

i � 0, we have
Λ̄k+1
i ◦

[
Gi(x̄k)−Hi(x̄k)

]
≤ 0. Substituting this inequality into (4.3.11), we

obtain:

f(x̄k)− f(x̄k+1) ≥ ρf
2
∥∥x̄k − x̄k+1∥∥2

2 +
∥∥x̄k+1 − x̄k

∥∥2
Qk
.

This inequality is indeed (4.3.6) which proves the item a). If there exists at
least one i0 ∈ {1, . . . ,m} such that Gi0(x̄k)−Hi0(x̄k) ≺ 0 and Λ̄k+1

i0
� 0 then

78 INNER CONVEX APPROXIMATION METHODS FOR NONCONVEX SDP

Λk+1
i0
◦
[
Gi0(x̄k)−Hi0(x̄k)

]
< 0. Substituting this inequality into (4.3.11) we

conclude that f(x̄k+1) < f(x̄k) which proves item b). The last statement c)
follows directly from the inequality (4.3.6).

The following theorem shows the convergence of Algorithms 4.3.1 (resp. 4.3.2)
to a stationary point of (NSDP) (resp. (4.2.5)).
Theorem 4.3.2. Suppose that Assumptions A.4.2.5 and A.4.3.6 are satisfied.
Suppose further that the lower level set Lf (f(x̄0)) is bounded. Let {(x̄k, Λ̄k)}k≥1
be an infinite sequence generated by Algorithm 4.3.1 (resp. Algorithm 4.3.2)
starting from x̄0 ∈ ri(D). Assume that λmax(Qk) ≤M < +∞. Then if either f
is strongly convex or λmin(Qk) ≥ ρ > 0 for k ≥ 0 then every accumulation point
(x̄∗, Λ̄∗) of {(x̄k, Λ̄k)} is a KKT point of (NSDP) (resp. (4.2.5)). Moreover, if
the set of the KKT points of (NSDP) (resp. (4.2.5)) is finite then the whole
sequence

{
(x̄k, Λ̄k)

}
converges to a KKT point of (NSDP) (resp. (4.2.5)).

Proof. It is sufficient to prove the first case for Algorithm 4.3.1. The second
case can be proved similarly. Let M(x̄0) :=

{
x̄k | k ≥ 0

}
be the sequence of

sample points generated by Algorithm 4.3.1 starting from x̄0. The idea of the
proof is to apply Zangwill’s convergence theorem [216, p. 91]. For a given x ∈ Ω,
let us define the following mapping:

S(x,Q) :=argmin
y∈Ω

{
f(y)+ 1

2(y − x)TQ(y − x) |Gi(y;ψi(x))�0, i=1, . . . ,m
}
.

Then, S(·, ·) is a multivalued mapping and it can be considered as the solution
mapping of the convex subproblem CSDP(x̄k). Note that the sequence {x̄k}k≥0
generated by Algorithm 4.3.1 satisfies x̄k+1 ∈ S(x̄k, Qk) for all k ≥ 0. We first
prove that S is a closed mapping. Indeed, by Assumption A.4.3.6, CSDP(x̄k)
is feasible. Moreover, CSDP(x̄k) is strictly convex. Hence, S(x̄k, Qk) =

{
x̄k+1},

which is obviously closed. On the other hand, since f is either strongly convex
or ρk ≡ ρ > 0 for all k ≥ 0 and Qk ≡ Q is full-row-rank, it follows from
Lemma 4.3.2 that the objective function f is strictly monotone onM(x̄0), i.e.
f(x̄k+1) < f(x̄k) for all x̄k, x̄k+1 ∈ M(x̄0). Since M(x̄0) ⊆ Lf (f(x̄0)) and
Lf (f(x̄0)) is compact,M(x̄0) is also compact. By applying [132, Theorem 2]
we conclude that every limit point of the sequence

{
x̄k
}
k≥0 belongs to the set

of stationary points S∗. Moreover, since f is bounded from below and either f
is strongly convex or ρ > 0 and Q is full-row rank, it follows from (4.3.6) that
limk→∞

∥∥x̄k+1 − x̄k
∥∥ = 0. Therefore, S∗ is connected and if S∗ is finite then

the whole sequence {x̄k}k≥0 converges to x̄∗ in S∗.

We note that the assumptions of Theorem 4.3.2 are rather restrictive. One
possibility is to relax these assumptions to obtain a more general results as
done in [177] for the scalar case.

CONCLUSION 79

4.4 Conclusion

We have presented a generalized inner convex approximation method for solving
a class of nonconvex SDP problems. We have also provided some explicit
formulas to generate psd-convex overestimates of a given nonconvex matrix-
valued mapping. Alternatively, we have developed a second algorithm which
we call generalized convex-concave decomposition algorithm for solving convex
SDP problems with generalized concave-concave constraints. This method can
be considered on the one hand as a variant of the first algorithm and, on the
other hand, as a generalization of classical convex-concave procedures for scalar
DC programming. The convergence of both algorithms has been proved under
standard assumptions used in nonlinear SDP and a fundamental assumption on
the nonemptiness of the interior of the feasible set. In principle, these algorithms
can be applied to solve any nonconvex SDP problem where we can be able to
either find a psd-convex overestimate or a psd-convex-concave decomposition
for the nonconvex matrix-valued mappings.

Chapter 5

BMI optimization in robust
controller design

5.1 BMI optimization in static feedback control

In this chapter we focus on the optimization problems with bilinear matrix
inequality (BMI) constraints derived from the following linear, time-invariant
system:  ẋ = Ax+B1w +Bu,

z = C1x+D11w +D12u,
y = Cx+D21w,

(5.1.1)

where x ∈ Rnx is the state vector, w ∈ Rnw is the performance input, u ∈ Rnu

is the input vector, z ∈ Rnz is the performance output, y ∈ Rny is the physical
output vector, A ∈ Rnx×nx is state matrix, B ∈ Rnx×nu is input matrix and
C ∈ Rny×nx is the output matrix. By using a static feedback controller of the
form u = Fy with F ∈ Rnu×ny , we can write the closed-loop system as follows:{

ẋF = AFxF +BFw,
z = CFxF +DFw,

(5.1.2)

where AF := A+BFC, BF := B1 +BFD21, CF := C1 +D12FC and DF :=
D11 +D12FD21. Finding a fixed order controller that satisfies a given criterion
such as stabilization, minimizing the H2 and H∞ norm or mixed H2/H∞
synthesis leads to an optimization problem with BMI constraints by means of,
e.g. Lyapunov’s theory. These problems have been studied in several research

81

82 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

papers both from theoretical aspects and numerical methods, see e.g. [7, 24, 33,
44, 76, 99, 116, 117, 121, 150, 186].

As contributions of this chapter, we first show that both algorithms, Algorithms
4.3.1 and 4.3.2, developed in Chapter 4 can be applied to solve the following
optimization problems:

1. Sparse linear static output feedback controller design [92];

2. Spectral abscissa and pseudospectral abscissa optimization [33, 35, 119,
205];

3. H2 control;

4. H∞ control;

5. and mixed H2/H∞ synthesis control.

We implement both algorithms in Matlab and test their performance by using
the data from [92, 151] and the COMPleib library [119]. We propose several
heuristic procedures to find a starting point for our algorithms.

Outline of Chapter 5. The outline of this chapter is as follows. In the next
section, we present the implementation details of the algorithms. In Section
5.3, we study the optimization of sparse linear static output feedback controller
design, spectral abscissa and pseudospectral abscissa optimization problems.
Sections 5.4 and 5.5 deal with the BMI optimization problems of H2 and H∞
control, respectively. Section 5.6 presents the BMI optimization problem of
mixed H2/H∞ synthesis control. The last section gives some conclusion for this
chapter.

5.2 Implementation details

We first present the following additional results which will be used in the sequel.
Definition 5.2.1. A mapping F : Rp×q × Sp → Sp given by F (X,Y) :=
XQ−1XT − Y , where Q ∈ Sq++, is called a Schur psd-convex1 mapping.

The following results will be used to transform a Schur psd-convex constraint
to an LMI constraint.

1Due to Schur’s complement form

IMPLEMENTATION DETAILS 83

Lemma 5.2.1.

a) The mappings f(X) := XTX and g(X) := XXT are psd-convex on Rm×n.
The mapping f(X) := X−1 is psd-convex on Sp++.

b) Suppose that A ∈ Sn. Then the matrix inequality BBT − A ≺ (�) 0 is
equivalent to: [

A B
BT I

]
� (�) 0. (5.2.1)

c) Suppose that A ∈ Sn, D � 0. Then we have:

[
A−BBT C
CT D

]
� (�) 0⇐⇒

 A B C
BT I O
CT O D

� (�) 0. (5.2.2)

The proof of this lemma is trivial by applying Schur’s complement and Lemma
4.2.1 [30]. We omit the proof details here.

Since all the problems addressed in this chapter possess at least one BMI
constraint, we propose two general schemes to treat these problems based on
Algorithms 4.3.1 and 4.3.2, respectively.

Scheme S.5.2.1.(For Algorithm 4.3.1).

Step 1: Find a psd-convex overestimate Gi(x; yi) of Fi(x) w.r.t. the
parameterization yi = ψi(x) for i = 1, . . . ,m (see, e.g. Example 4.3.3).

Step 2 (Phase 1): Find a starting point x̄0 ∈ ri(D).

Step 3: Whenever the iteration point x̄k is available, we define a procedure
to transform the convex semidefinite programming problem CSDP(x̄k)
into an optimization problem with LMI constraints.

Step 4 (Phase 2): Apply Algorithm 4.3.1 with the procedure at Step 3
and an SDP solver to solve the given problem.

End.

Similar to S.5.2.1, the following scheme is using Algorithm 4.3.2.

Scheme S.5.2.2.(For Algorithm 4.3.2).

Step 1: Find a convex-concave decomposition of the BMI constraints as
G(x)−H(x) � 0.

84 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

Step 2 (Phase 1): Find a starting point x̄0 ∈ ri(D).

Step 3: Whenever the iteration point x̄k is available, we linearize the
concave part to obtain the convex constraintG(x)−Hk(x) � 0, whereHk is
the linearization of H at x̄k, to form the convex semidefinite programming
problem of the form (4.3.4).

Step 4: Define a procedure to reformulate each convex constraint of
problem (4.3.4) as an LMI constraint by means of Lemma 5.2.1.

Step 5 (Phase 2): Apply Algorithm 4.3.2 with the procedures at Steps 3
and 4 and an SDP solver to solve the given problem.

End.

Next, we consider the stopping criterion to terminate Algorithms 4.3.1 and
4.3.2. We can terminate these algorithms if one of the following conditions is
satisfied:

a) the subproblems CSDP(x̄k) or (4.3.4) encounters a numerical problem;

b) the maximum number of iterations, Kmax, is reached;

c)
∥∥x̄k+1 − x̄k

∥∥
∞ /max

{∥∥x̄k∥∥∞ , 1
}
≤ εd for a given tolerance εd > 0;

d) the objective values are not significantly improved after two successive
iterations, i.e.

∣∣fk+1 − fk
∣∣ ≤ εf max

{∣∣fk∣∣ , 1} for some k = k̄ and k =
k̄ + 1, where fk := f(x̄k) and εf is a given tolerance.

In the following tests, we chose εd = 10−3 and εf = 10−4.

We implemented both schemes S.5.2.1 and S.5.2.2 in Matlab 7.11.0 (R2010b)
running on an Intel® Core (TM)2 Quad CPU Q6600, 2.4GHz PC Desktop with
3Gb RAM. The algorithms have been tested by using the system data from [92,
151] and the COMPleib library [119]. We used the YALMIP package [124] as a
modeling language and SeDuMi 1.1 as an SDP solver [180] to solve the LMI
optimization problems arising in the schemes S.5.2.1 and S.5.2.2 at the initial
phase (Phase 1) and the subproblems CSDP(x̄k) and (4.3.4). The Matlab codes
can be found at: http://www.kuleuven.be/optec/software/BMIsolver.

We also benchmarked our methods with various examples and compared our
results with HIFOO [86] and PENBMI [97] for all control problems. HIFOO is
an open-source Matlab package for fixed-order controller design. It computes a
fixed-order controller by using a hybrid algorithm for nonsmooth, nonconvex
optimization based on quasi-Newton updating and gradient sampling techniques.

http://www.kuleuven.be/optec/software/BMIsolver

LINEAR OUTPUT-FEEDBACK CONTROLLER DESIGN 85

PENBMI [97] is a commercial software for solving optimization problems with
quadratic objective function and BMI constraints, which is freely licensed for
academic purposes. We initialized the initial controller for HIFOO and the
BMI parameters for PENBMI at the initial values of our methods. As shown
in [150], we can reformulate the spectral abscissa feasibility problem as a rank
constrained LMI feasibility problem. Therefore, we also compared our results
with LMIRank [150] (a MATLAB toolbox for solving rank constrained LMI
feasibility problems) by implementing a simple procedure for solving the spectral
abscissa optimization problem.

5.3 Linear output-feedback controller design

In this section, we consider two cases, namely sparse linear controller and
abscissa optimization problems. Then, we show that the methods can be
applied to solve an optimization problem of pseudospectral abscissa.

Sparse linear constant output feedback design

Let us consider a BMI optimization problem of sparse linear constant output-
feedback design given as:

min
α,P,F

{
f(α, P, F) := −σα+

∑nu
i=1
∑ny
j=1 |Fij |

}
s.t (A+BFC)TP+P (A+BFC)+2αP ≺ 0,

P = PT , P � 0.
(5.3.1)

Here, matrices A, B, C are given with appropriate dimensions, P and F are
referred to as variables and σ > 0 is a weighting parameter. The objective
function consists of two terms: the first term σα is to stabilize the system (or
to maximize the decay rate) and the second one is to ensure the sparsity of the
gain matrix F . This problem is a modification of the first example in [92]. Let
us illustrate the scheme S.5.2.1 for solving this problem.

Step 1: Let BF := A+ BFC + αI, where I is the identity matrix. Then, by
Example 4.2.1 we can write:

(A+BFC)TP + P (A+BFC) + 2αP = BTFP + PBF

= BTFBF + PTP − (BF − P)T (BF − P), (5.3.2)

= 1
2
[
(BF + P)T (BF + P)− (BF − P)T (BF − P)

]
. (5.3.3)

86 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

In our implementation, we used the decomposition (5.3.3). If we denote by:

G(α, P, F) := 1
2(BF + P)T (BF + P),

and (5.3.4)
H(α, P, F) := 1

2(BF − P)T (BF − P),

then the BMI constraint in (5.3.1) can be written equivalently as a psd-convex-
concave matrix inequality constraint (of a variable x formed from (α, P, F) as
x := (α,vec(P)T ,vec(F)T)T) as follows:

G(α, P, F)−H(α, P, F) ≺ 0. (5.3.5)

Note that the objective function of (5.3.1) is convex but nonsmooth which is not
directly suitable for the sequential SDP approach in [44], but, the nonconvex
problem (5.3.1) can be reformulated in the form of (NSDP) by using slack
variables.

Steps 2-5: The implementation is carried out as follows:

Phase 1. (Determine a starting point x̄0 ∈ ri(D)). Set F 0 := 0, α0 :=
−α0(AT + A)/2 where α0(AT + A) is the maximum real part of the
eigenvalues of the matrix AT +A, and compute P = P 0 as the solution
of the LMI feasibility problem:

(A+BF 0C)TP + P (A+BF 0C) + 2α0P ≺ 0. (5.3.6)

The above choice for (α0, F 0) originates from the property that P 0 = I
renders the left hand size of (5.3.6) negative semidefinite (but not negative
definite).

Phase 2. Perform Algorithms 4.3.1 or 4.3.2 with the starting point x̄0

found at Phase 1 by applying Schemes S.5.2.1 or S.5.2.2, respectively.

As an example, let us now illustrate Step 4 of Scheme S.5.2.2. After linearizing
the concave part of the convex-concave reformulation of the last BMI constraint
in (5.3.1) at (F k, P k, αk) we obtain the linearization:

(A+BFC+αI+P)T (A+BFC+αI+P)−Hk(F, P, α) ≺ 0, (5.3.7)

where Hk(F, P, α) is a linear mapping of F , P and α. Now, by applying Lemma
5.2.1, (5.3.7) can be transformed into an LMI constraint of the form:[

Hk(F, P, α) (A+BFC+αI+P)T
(A+BFC+αI+P) I

]
� 0.

LINEAR OUTPUT-FEEDBACK CONTROLLER DESIGN 87

With the above approach we solved problem (5.3.1) for the same system data
as in [92]. Here, matrices A, B and C are given, respectively as:

A=


−2.45 −0.90 1.53 −1.26 1.76
−0.12 −0.44 −0.01 0.69 0.90

2.07 −1.20 −1.14 2.04 −0.76
−0.59 0.07 2.91 −4.63 −1.15
−0.74 −0.23 −1.19 −0.06 −2.52

, B=


0.81 −0.79 0.00 0.00 −0.95
−0.34 −0.50 0.06 0.22 0.92
−1.32 1.55 −1.22 −0.77 −1.14
−2.11 0.32 0.00 −0.83 0.59

0.31 −0.19 −1.09 0.00 0.00

,
and

C =

0.00 0.00 0.16 0.00 −1.78
1.23 −0.38 0.75 −0.38 −0.00
0.46 0.00 −0.05 0.00 0.00
0.00 −0.12 0.23 −0.12 1.14

.
The weighting parameter σ was chosen by σ = 3. In this example, Algorithm
4.3.2 was terminated after 15 iterations, whereas the objective function was not
significantly improved. However, after the 2nd iteration, matrix F only has 3
nonzero elements, while the decay rate α is 1.17316. This value is much higher
than the one reported in [92], α = 0.3543 after 6 iterations. We obtained the
gain matrix F as:

F =


0.6540 0.0000 0.0000 0.0000
0.0000 −0.4872 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 1.1280 0.0000 0.0000

 .
With this matrix, the maximum real part of the eigenvalues of the closed-loop
matrix in (5.1.2), AF := A + BFC, is α0(AF) := −1.40706. Simultaneously,
α0(ATFP + PAF + 2αP) = −0.327258 < 0 and α0(P) = 0.587574 > 0. Note
that α0(AF) 6= −α due to the in-activeness of the BMI constraint in (5.3.1) at
the 2nd iteration.

Spectral abscissa and pseudo-spectral abscissa optimization

One popular problem in control theory is to optimize the spectral abscissa of
the closed-loop system ẋ = (A+BFC)x. Briefly, this problem is presented as
an unconstrained optimization problem of the form:

min
F∈Rnu×ny

α0(A+BFC), (5.3.8)

where α0(A+BFC) := sup {Re(λ) | λ ∈ Λ(A+BFC)} is the spectral abscissa
of A + BFC, Re(λ) denotes the real part of λ ∈ C and Λ(A + BFC) is the
spectrum of A + BFC. Problem (5.3.8) has many drawbacks in terms of

88 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

numerical solution due to the nonsmoothness and non-Lipschitz continuity of
the objective function α0 [34].

In order to apply the method developed in Chapter 4, problem (5.3.8) is
reformulated as an optimization problem with BMI constraints of the form, see,
e.g. [34, 118]:

max
P,F,β

β

s.t. (A+BFC)TP+P (A+BFC)+2βP ≺ 0,
P = PT , P � 0.

(5.3.9)

Here, matrices A ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx are given. Matrices
P ∈ Rnx×nx and F ∈ Rnu×ny and the scalar β are considered as variables. If
the optimal value of (5.3.9) is strictly positive then the closed-loop feedback
controller u = Fy stabilizes the linear system ẋ = (A+BFC)x.

Problem (5.3.9) is very similar to (5.3.1). Therefore, by using the same trick as
in (5.3.1), we can reformulate (5.3.9) in the form of (NSDP) or (4.2.5). More
precisely, if we define BF := A+BFC + βI then the bilinear matrix mapping
ATFP + PAF can be represented as a psd-convex-concave decomposition of the
form (5.3.3) and problem (5.3.9) can be rewritten in the form of (4.2.5).

In this test, we implemented Algorithms 4.3.1 and 4.3.2 for solving this resulting
problem by using the same parameters and the stopping criterion as in the
previous subsection. In addition, we regularized the objective function by
adding the term ρF

2
∥∥F − F k∥∥2

F
+ ρP

2
∥∥P − P k∥∥2

F
, with ρF = ρP = 10−2. The

maximum number of iterations Kmax was set to 200.

We tested for several problems in COMPleib and compared our results with
the ones reported by HIFOO, PENBMI and LMIRank. For LMIRank, we
implemented the algorithm proposed in [150]. We initialized the value of the
decay rate α0 at 10−4 and performed an iterative loop to increase α as αk+1 :=
αk + 0.1. The algorithm was terminated if either the problems (12) or (21)
in [150] with a corresponding value of α could not be solved or the maximum
number of iterations Kmax := 200 was reached.

The numerical results of the four algorithms are reported in Table 5.1. Here,
we initialized the algorithm in HIFOO at the same initial guess F 0 = 0. Since
PENBMI and our methods solve the same BMI problems, they were initialized
by the same initial values for P , F and β.

The notation in Table 5.1 consists of: Name is the name of problems, α0(A),
α0(AF) are the maximum real part of the eigenvalues of the open-loop and
closed-loop matrices A, AF , respectively; iter is the number of iterations,
time[s] is the CPU time in seconds. The columns titled HIFOO, LMIRank

LINEAR OUTPUT-FEEDBACK CONTROLLER DESIGN 89

Table 5.1: Computational results for (5.3.9) in COMPleib

Problem Other Results, α0(AF) Algorithm 4.3.1 Algorithm 4.3.2
Name α0(A) HIFOO LMIRANK PENBMI α0(AF) Iter time[s] α0(AF) Iter time[s]
AC1 0.000 -0.2061 -8.4766 -7.0758 -0.7814 55 19.510 -0.8644 62 23.580
AC4 2.579 -0.0500 -0.0500 -0.0500 -0.0500 14 4.380 -0.0500 14 6.060
AC5a 0.999 -0.7746 -1.8001 -2.0438 -0.7389 37 12.030 -0.7389 28 10.200
AC7 0.172 -0.0322 -0.0204 0.0896 -0.0502 90 80.710 -0.0766 200 95.830
AC8 0.012 -0.1968 -0.4447 0.4447 -0.0640 40 32.340 -0.0755 24 12.110
AC9 0.012 -0.3389 -0.5230 -0.4450 -0.3926 200 217.230 -0.4053 100 55.460
AC11 5.451 -0.0003 -5.0577 - -3.1573 181 73.660 -5.5960 200 81.230
AC12 0.580 -10.8645 -9.9658 -1.8757 -0.2948 200 71.200 -0.5890 200 61.920
HE1 0.276 -0.2457 -0.2071 -0.2468 -0.2134 200 58.580 -0.2241 200 56.890
HE3 0.087 -0.4621 -2.3009 -0.4063 -0.8380 57 54.720 -0.9936 200 98.730
HE4 0.234 -0.7446 -1.9221 -0.0909 -0.8375 88 70.770 -0.8647 63 27.620
HE5 0.234 -0.1823 - -0.2932 -0.0609 200 181.470 -0.1115 200 86.550
HE6 0.234 -0.0050 -0.0050 -0.0050 -0.0050 18 106.840 -0.0050 12 29.580
REA1 1.991 -16.3918 -5.9736 -1.7984 -2.8932 200 74.560 -4.2792 200 70.370
REA2 2.011 -7.0152 -10.0292 -3.5928 -1.9514 43 13.120 -2.1778 40 13.360
REA3 0.000 -0.0207 -0.0207 -0.0207 -0.0207 161 311.490 -0.0207 200 267.160
DIS2 1.675 -6.8510 -10.1207 -8.3289 -8.3419 44 12.600 -8.4540 28 9.430
DIS4 1.442 -36.7203 -0.5420 -92.2842 -5.4467 89 40.120 -8.2729 95 40.200
WEC1 0.008 -8.9927 -8.7350 -0.9657 -0.8568 68 76.000 -0.8972 200 121.300
IH 0.000 -0.5000 -0.5000 -0.5000 -0.5000 11 82.730 -0.5000 7 23.670
CSE1 0.000 -0.4509 -0.4844 -0.4490 -0.2949 200 1815.400 -0.3093 81 219.910
TF1 0.000 - - -0.0618 -0.0704 200 154.430 -0.1598 87 34.960
TF2 0.000 - - -1.0e-5 -1.0e-5 12 10.130 -1.0e-5 8 4.220
TF3 0.000 - - -0.0032 -0.0032 95 70.980 -0.0031 93 35.000
NN1 3.606 -3.0458 -4.4021 -4.3358 0.1769 200 59.230 -1.5574 200 57.370
NN5a 0.420 -0.0942 -0.0057 -0.0942 -0.0490 200 154.160 -0.0722 200 79.210
NN9 3.281 -2.0789 -0.7048 - 0.0991 44 13.860 -0.0279 33 11.880
NN13 1.945 -3.2513 -4.5310 -9.0741 -0.2783 32 12.430 -3.4412 181 64.500
NN15 0.000 -6.9983 -11.0743 -0.0278 -1.0409 200 60.930 -1.0424 200 58.440
NN17 1.170 -0.6110 -0.5130 - -0.5991 132 34.820 -0.6008 99 27.190

and PENBMI give the maximum real part of the eigenvalues of the closed-loop
system for a static output feedback controller computed by available software
HIFOO [86], LMIRank [150] and PENBMI [97], respectively. Our results can be
found in the sixth and ninth columns. The entries with a dashed sign indicate
that there is no feasible solution found. Algorithms 4.3.1 and 4.3.2 fail or make
only slow progress towards a local solution with 6 problems: AC18, DIS5, PAS,
NN6, NN7, NN12 in COMPleib. Problems AC5 and NN5 were initialized with
a different matrix F 0 to avoid numerical problems.

Note that both Algorithms 4.3.1 and 4.3.2 as well as the algorithms implemented
in HIFOO, LMIRank and PENBMI are local optimization methods, which only
report a local minimizer and these solutions may not be the same. Because the
LMIRank package can only handle feasibility problems, it cannot directly be
used to solve problem (5.3.9). Therefore, we have used a direct search procedure
for finding α. The computational time of the overall procedure is much higher
than the other methods for the majority of the test problems.

90 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

To conclude this section, we show that our methods can also be applied to
solve the problem of optimizing the pseudo-spectral abscissa in static feedback
controller designs. This problem is described as follows (see [34, 118]):

max
β,µ,ω,F,P

β

s.t.
[
2βP+ATFP+PAF +µI−ωIz εP

εP ωI

]
� 0,

P � 0, P = PT , µ > 0,

(5.3.10)

where AF = A+BFC as before and ω ≤ 0.

We only illustrate Scheme S.5.2.2, but it can be done similarly for Scheme
S.5.2.1. By using the same notation BF = A + BFC + βI as in (5.3.9) and
applying the statement b) of Lemma 5.2.1, the BMI constraint in this problem
can be transformed into a psd-convex-concave one:[

BTFBF +PTP+(µ−ω)I εP
εP ωI

]
−
[
(BF−P)T(BF−P) 0

0 0

]
�0.

If we denote the linearization of (BF − P)T (BF − P) at the iteration k by Hk,
i.e. Hk = (BF −P)T (BkF −P k)+(BkF −P k)T (BF −P)−(BkF −P k)T (BkF −P k),
then the linearized constraint in the subproblem (4.3.4) can be represented as
an LMI thanks to Lemma 5.2.1:

Hk + (ω − µ)I BTF P −εP
BF I 0 0
P 0 I 0
−εP 0 0 −ωI

 � 0.

Hence, Algorithm 4.3.2 can be applied to solve problem (5.3.10).
Remark 5.3.1. If we define F̄ := BFC then the bilinear matrix mapping
ATFP + PAF can be rewritten as:

ATFP + PAF = 1
2
[
(P + F̄)T (P + F̄)− (P − F̄)T (P − F̄)

]
−ATP − PA.

By using this decomposition, one can avoid the contribution of matrix A on the
bilinear term. Consequently, Algorithm 4.3.2 may work better in some specific
problems.

5.4 H2 control: BMI optimization approach

In this section, we consider an optimization problem arising in H2 synthesis
of the linear system (5.1.1). Let us assume that D12 = 0 and D21 = 0, then

H2 CONTROL: BMI OPTIMIZATION APPROACH 91

this problem is formulated as the following optimization problem with BMI
constraints [119].

min
F,Q,X

trace(X)
s.t. (A+BFC)Q+Q(A+BFC)T +B1B

T
1 � 0,[

X C1Q
QCT1 Q

]
� 0, Q � 0.

(5.4.1)

Here, we also assume that B1B
T
1 is positive definite. Otherwise, we use B1B

T
1 +

εI instead of B1B
T
1 with ε = 10−5 in (5.4.1).

In order to apply Algorithms 4.3.1 and 4.3.2 for solving problem (5.4.1), a
starting point x̄0 ∈ ri(D) is required. This task can be done by performing some
extra steps called Phase 1. This phase is described in detail as follows:

Algorithm 5.4.1.(Phase 1: Determine a starting point x̄0 ∈ ri(D)).
Step 1. If α0(A+AT) < 0 then we set F 0 := 0. Otherwise, go to Step 3.
Step 2. Solve the following optimization problem with LMI constraints:

min
Q,X

trace(X)
s.t. AF 0Q+QATF 0 +B1B

T
1 ≺ 0,[

X C1Q
QCT1 Q

]
� 0, Q � 0,

(5.4.2)

where AF 0 := A + BF 0C. If this problem has a solution Q0 and X0 then
terminate Phase 1 and using F 0 together with Q0, X0 as a starting point x̄0

for Phase 2. Otherwise, go to Step 3.
Step 3. Solve the following feasibility problem with LMI constraints:

Find P � 0 and K such that:[
PA+ATP+KC+CTKT PB1

BT1 P −σ2
0Iw

]
� 0,

[
X C1
CT1 P

]
� 0,

to obtain K∗ and P ∗, where σ0 is a given regularization factor. Compute
F ∗ := B+(P ∗)−1K∗, where B+ is a pseudo-inverse of B, and resolve problem
(5.4.2) with F 0 := F ∗. If problem (5.4.2) has a solution Q0 and X0 then set
x̄0 := (F 0, Q0, X0) and terminate Phase 1. Otherwise, perform Step 4.
Step 4. Apply the method in Section 5.3 to solve the following BMI feasibility
problem:

Find F and Q � 0 such that : (A+BFC)Q+Q(A+BFC)T +B1B
T
1 ≺ 0.

If this problem has a solution F 0 then go back to Step 2. Otherwise, declare
that no strictly feasible point is found.
End.

92 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

Note that Step 3 of Algorithm 5.4.1 corresponds to determining a full state
feedback controller and approximating it subsequently with an output feedback
controller. Step 4 of Algorithm 5.4.1 is usually time consuming. Therefore, in
our numerical implementation, we terminate Step 4 after finding a point such
that α0((A+BFC)Q+Q(A+BFC)T +B1B

T
1) ≤ −0.1.

Remark 5.4.1. Algorithm 5.4.1 is finite. It is terminated either at Step 4 if
no feasible point is found or at Step 2 if a feasible point is found. Indeed, if a
feasible matrix F 0 is found at Step 4 then the first BMI constraint of (5.4.2)
is feasible with some Q � 0. Thus we can find an appropriate matrix X such
that X − CQCT ≺ 0, which implies that the second LMI constraint of (5.4.2)
is satisfied. Consequently, problem (5.4.2) has a solution.

Algorithm 5.4.1 is slightly heuristic. It can be improved when we apply it to a
specific problem. However, as we can see in the numerical results, it performs
quite acceptable for the majority of the test problems.

In the following numerical examples, we have implemented Phase 1 and Phase
2 of Scheme S.5.2.2 by using the decomposition:

AFQ+QATF +B1B
T
1 = 1

2(AF +Q)(AF +Q)T +B1B
T
1 −

1
2(AF−Q)(AF−Q)T

for the BMI form at the left-top corner of the first constraint in (5.4.1). We also
used the convex overestimate presented in Example 4.3.3 in Algorithm 4.3.1.
The regularization parameters and the stopping criterion for Algorithms 4.3.1
and 4.3.2 were chosen as in Section 5.3 and Kmax := 300.

We tested Algorithms 4.3.1 and 4.3.2 for many problems in COMPleib and the
computational results are reported in Table 5.2. For the comparison purpose,
we also carried out the test with HIFOO [86] and PENBMI [97], and the
results are put in the columns marked by HIFOO and PENBMI in Table 5.2,
respectively. The initial controller for HIFOO was set to F 0 and the BMI
parameters for PENBMI were initialized with (F,Q,X) = (F 0, Q0, X0). Here,
nx, ny, nz, nw, nu are the dimensions of problems, the columns titled HIFOO
and PENBMI give the H2 norm of the closed-loop system for the static output
feedback controller computed by HIFOO and PENBMI; iter and time[s] are
the number of iterations and CPU time in seconds of Algorithms 4.3.1 and 4.3.2,
respectively, included Phase 1 and Phase 2. Problems marked by “b” mean that
Step 4 in Phase 1 is performed. In Table 5.2, we only report the problems that
were solved by Algorithms 4.3.1 and 4.3.2. The numerical results allow us to
conclude that Algorithm 4.3.1, Algorithm 4.3.2, PENBMI and HIFOO reported
similar values for the majority of the test problems in COMPleib. Algorithm
4.3.1 failed in solving 4 problems: AC7, AC8, REA1 and DIS2.

H2 CONTROL: BMI OPTIMIZATION APPROACH 93

Table 5.2: H2 synthesis benchmarks on COMPleib plants

Problem Other Results, H2 Algorithm 4.3.1 Algorithm 4.3.2
Name nx ny nu nz nw HIFOO PENBMI H2 iter time[s] H2 iter time[s]

AC1b 5 3 3 2 3 0.0250 0.0061 0.0508 45 23.460 0.0540 3 3.380
AC2b 5 3 3 5 3 0.0257 0.0075 0.0508 45 24.180 0.0540 3 3.390
AC3 5 4 2 5 5 2.0964 2.0823 2.1211 300 147.990 2.1117 210 73.380
AC4 4 2 1 2 2 11.0269 - 11.0269 2 1.620 11.0269 2 0.990
AC6 7 4 2 7 7 2.8648 2.8648 2.8660 56 52.070 2.8664 153 124.230
AC7 9 2 1 1 4 0.0172 0.0162 - - - 0.0176 1 0.670
AC8 9 5 1 2 10 0.6330 0.7403 - - - 0.6395 300 282.760
AC12b 4 4 3 1 3 0.0022 0.0106 0.0988 78 55.200 0.0992 36 28.540
AC15b 4 3 2 6 4 1.5458 1.4811 1.5211 300 200.200 1.5181 264 85.390
AC16b 4 4 2 6 4 1.4769 1.4016 1.4509 300 159.210 1.4427 300 99.790
AC17 4 2 1 4 4 1.5364 1.5347 1.5516 300 141.660 1.5507 171 49.350
HE2 4 2 2 4 4 3.4362 3.4362 4.7447 51 27.480 4.7406 263 97.310
HE3b 8 6 4 10 1 0.0197 0.0071 0.1800 300 225.780 0.1596 249 217.360
HE4b 8 6 4 12 8 6.6436 6.5785 7.2453 300 254.230 7.1242 300 412.830
REA1 4 3 2 4 4 0.9442 0.9422 - - - 1.0622 249 80.810
REA2b 4 2 2 4 4 1.0339 1.0229 1.2359 300 139.700 1.1989 300 101.730
DIS1 8 4 4 8 1 0.6705 0.1174 0.76125 300 312.350 0.7427 300 255.810
DIS2 3 2 2 3 3 0.4013 0.3700 - - - 0.3819 4 1.370
DIS3 6 4 4 6 6 0.9527 0.9434 1.0544 300 161.330 1.0322 300 210.470
DIS4 6 6 4 6 6 1.0117 0.9696 1.0518 300 260.520 1.0276 300 210.690
WEC1b 10 4 3 10 10 7.3940 8.1032 14.6015 300 326.640 12.9093 119 190.150
WEC2b 10 4 3 10 10 6.7908 7.6502 14.6574 230 238.090 12.2102 261 407.470
AGS 12 2 2 12 12 6.9737 6.9737 6.9833 45 124.010 6.9838 18 28.830
BDT1 11 3 3 6 1 0.0024 - 0.0019 63 155.900 0.0017 51 64.410
MFP 4 2 3 4 4 6.9724 6.9724 6.9755 2 4.890 7.0354 300 114.560
PSM 7 3 2 5 2 0.0330 0.0007 0.2287 300 173.190 0.1753 300 217.250
EB2b 10 1 1 2 2 0.0640 0.0084 0.1587 248 299.520 0.1604 114 131.380
EB3 10 1 1 2 2 0.0732 0.0072 0.1794 300 330.320 0.0079 7 6.240
TF1b 7 4 2 4 1 0.0945 - 0.1713 300 231.470 0.1599 192 166.810
TF2 7 3 2 4 1 11.1803 - 11.1803 10 7.170 11.1803 3 2.810
TF3b 7 3 2 4 1 0.1943 0.1424 0.2763 162 149.840 0.2565 138 128.250
NN2 2 1 1 2 2 1.1892 1.1892 1.1892 6 3.070 1.1892 4 1.090
NN4 4 3 2 4 4 1.8341 1.8335 1.8681 300 145.300 1.8590 222 67.260
NN8 3 2 2 3 3 1.5152 1.5117 1.5738 300 139.680 1.5725 183 50.170
NN11 16 5 3 3 3 0.1178 0.0790 0.1149 249 1234.390 0.1263 39 91.070
NN13b 6 2 2 3 3 26.1012 26.1314 62.3888 300 180.060 62.3995 138 112.750
NN14b 6 2 2 3 3 26.1448 26.1314 62.3888 300 180.440 62.3995 138 110.020
NN15 3 2 2 4 1 0.0245 - 0.0384 36 146.860 0.0210 6 2.060
NN16b 8 4 4 4 8 0.1195 0.1195 0.1195 5 21.730 0.1195 3 23.030
NN17 3 1 2 2 1 3.2530 3.2404 3.3581 300 138.870 3.3329 300 88.770

If D12 6= 0 then the second LMI constraint of (5.4.1) becomes a BMI constraint:[
X (C1 +D12FC)Q

Q(C1 +D12FC)T Q

]
� 0, (5.4.3)

which is equivalent to X − CFQCTF � 0, where CF := C1 + D12FC. Since
f(Q) := Q−1 is convex on Snx++ (see Lemma 5.2.1 a)), this BMI constraint can

94 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

be reformulated as a convex-concave matrix inequality constraint of the form:[
X CF
CTF O

]
+
[
O O
O Q−1

]
� 0. (5.4.4)

By linearizing the concave term −f(Q) at Q = Qk as (Qk)−1 − (Qk)−1(Q −
Qk)(Qk)−1 (see [30]), the resulting constraint can be written as an LMI
constraint. Therefore, Algorithm 4.3.2 can be applied to solve problem (5.4.3)
in the case D12 6= 0.

5.5 H∞ control: BMI optimization approach

Alternatively, we can also apply Algorithms 4.3.1 and 4.3.2 to solve the
optimization with BMI constraints arising in H∞ control of the linear system
(5.1.1). Let us assume that D21 = 0, then this problem is reformulated as the
following optimization problem with BMI constraints [119]:

min
F,X,γ

γ

s.t.

ATFX +XAF XB1 CTF
BT1 X −γIw DT

11
CF D11 −γIz

 ≺ 0,

X � 0, γ > 0.

(5.5.1)

Here, as before, AF = A+BFC and CF = C1 +D12FC. The bilinear matrix
term ATFX+XAF at the top-left corner of the first constraint can be decomposed
as (5.3.2) or (5.3.3). Therefore, we can use these decompositions to transform
problem (5.5.1) into (4.2.5). After linearization, the resulting subproblem is also
rewritten as a standard SDP problem by applying Lemma 5.2.1. The scheme
S.5.2.2 is then applied. We omit this specification here. Similarly, we can use
the same trick as in Example 4.3.3 to form the convex subproblems of the form
CSDP(x̄k) in Algorithm 4.3.1 for this example.

To determine a starting point, we perform Phase 1 which is similar to the one
carried out in the H2-control subsection.

Algorithm 5.5.1.(Phase 1: Determine a starting point x̄0 ∈ ri(D)).
Step 1. If α0(AT +A) < 0 then set F 0 = 0. Otherwise, go to Step 3.
Step 2. Solve the following optimization problem with LMI constraints:

min
γ,X

γ

s.t.

ATF 0X +XAF 0 XB1 CTF 0

BT1 X −γIw DT
11

CF 0 D11 −γIz

≺ 0,

X � 0, γ > 0,

(5.5.2)

MIXED H2/H∞ CONTROL: BMI OPTIMIZATION APPROACH 95

where AF 0 := A + BF 0C and CF 0 := C1 + D12F
0C. If this problem has a

solution γ0 and X0 then terminate Phase 1 and using F 0 together with γ0, X0

as a starting point x̄0 for Phase 2. Otherwise, go to Step 3.
Step 3. Solve the following feasibility problem of LMI constraints:

Find P � 0, γ > 0 and K such that:PAT+AP+KTBT+BK B1 PC1+KTDT
12

BT1 −γIw DT
11

C1P+D12K D11 −γIz

≺0,

to obtain K∗, γ∗ and P ∗. Compute F ∗ := K∗(P ∗)−1C+, where C+ is a pseudo-
inverse of C, and resolve problem (5.5.2) with F 0 := F ∗. If problem (5.5.2)
has a solution X0 and γ0 then set x̄0 := (F 0, X0, γ0) and terminate Phase 1.
Otherwise, perform Step 4.
Step 4. Apply the method in Section 5.3 to solve the following BMI feasibility
problem:

Find F and P � 0 such that : (A+BFC)TP + P (A+BFC) ≺ 0.

If this problem has a solution F 0 then go back to Step 2. Otherwise, declare
that no strictly feasible point for (5.5.1) is found.
End.

As in the H2 control problem, Algorithm 5.5.1 of the H∞ control problem is
also terminated after finite iterations. In this Section, we also tested Algorithms
4.3.1 and 4.3.2 by using Algorithm 5.5.1 at Phase 1 for several problems in
COMPleib and by using the same parameters and the stopping criterion as in
the previous sections. The computational results are shown in Table 5.3. The
numerical results computed by HIFOO and PENBMI are also included in Table
5.3. Here, the notation is the same as in Table 5.2, except that H∞ denotes the
H∞-norm of the closed-loop system for the static output feedback controller.
We can see from Table 5.3 that the optimal values reported by Algorithms 4.3.1
and 4.3.2 and HIFOO are almost similar for many problems whereas in general
PENBMI has difficulties in finding a feasible solution.

5.6 Mixed H2/H∞ control: BMI optimization ap-
proach

Motivated from the H2 and H∞-control problem, in this section we consider
the mixed H2/H∞ synthesis control problem. Let us assume that D11 = 0,
D21 = 0 and the performance output z is divided in two components, z1 and

96 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

Table 5.3: H∞ synthesis benchmarks on COMPleib plants

Problem Other Results, H∞ Algorithm 4.3.1 Algorithm 4.3.2
Name nx ny nu nz nw HIFOO PENBMI H∞ iter time[s] H∞ iter time[s]

AC1 5 3 3 2 3 0.0000 - 0.0195 117 39.620 0.0177 93 28.050
AC2 5 3 3 5 3 0.1115 - 0.1174 120 91.560 0.1140 99 32.540
AC3 5 4 2 5 5 4.7021 - 3.5053 267 193.940 3.4859 210 76.170
AC4 4 2 1 2 2 0.9355 - 69.9900 2 2.690 69.9900 2 2.620
AC6 7 4 2 7 7 4.1140 - 4.1954 167 138.570 4.1954 167 138.570
AC7 9 2 1 1 4 0.0651 0.3810 0.0339 300 276.310 0.0548 300 278.330
AC8 9 5 1 2 10 2.0050 - 4.5463 224 230.990 3.0520 247 298.070
AC9b 10 5 4 2 10 1.0048 - 4.2254 300 365.910 0.9237 300 470.910
AC11b 5 4 2 5 5 3.5603 - 3.4924 300 255.620 3.0104 68 60.260
AC12 4 4 3 1 3 0.3160 - 2.5345 300 155.840 2.3025 300 181.870
AC15 4 3 2 6 4 15.2074 427.4106 15.2036 153 130.660 15.1995 105 36.700
AC16 4 4 2 6 4 15.4969 - 15.0433 267 201.360 14.9881 186 68.820
AC17 4 2 1 4 4 6.6124 - 6.6571 192 64.880 6.6373 129 42.400
HE1b 4 1 2 2 2 0.1540 1.5258 0.2188 300 97.760 0.1807 300 143.520
HE2 4 2 2 4 4 4.4931 - 6.8168 300 114.140 6.7846 177 67.470
HE3 8 6 4 10 1 0.8545 1.6843 0.8640 15 16.320 0.9243 105 95.000
HE4b 8 6 4 12 8 23.3448 - 252.9511 13 22.240 22.8713 252 325.580
HE5b 8 2 4 4 3 8.8952 - 36.3330 154 208.680 37.3906 300 430.820
REA1 4 3 2 4 4 0.8975 - 0.8815 183 67.790 0.8815 96 34.430
REA2b 4 2 2 4 4 1.1881 - 1.4444 300 109.430 1.4188 300 118.320
REA3 12 3 1 12 12 74.2513 74.4460 75.0634 2 137.120 74.5478 2 234.800
DIS1 8 4 4 8 1 4.1716 - 4.2041 129 110.330 4.1943 93 66.130
DIS2 3 2 2 3 3 1.0548 1.7423 1.1570 78 28.330 1.1546 54 17.120
DIS3 6 4 4 6 6 1.0816 - 1.1701 219 160.680 1.1382 285 195.960
DIS4 6 6 4 6 6 0.7465 - 0.7532 171 126.940 0.7498 126 93.220
TG1b 10 2 2 10 10 12.8462 - 12.9461 64 264.050 12.9336 45 84.380
AGS 12 2 2 12 12 8.1732 188.0315 8.1733 41 160.880 8.1732 24 55.290
WEC2 10 4 3 10 10 4.2726 32.9935 8.8809 300 1341.760 6.6082 300 476.010
WEC3 10 4 3 10 10 4.4497 200.1467 7.8215 225 875.100 6.8402 300 425.330
BDT1 11 3 3 6 1 0.2664 - 0.8544 3 5.290 0.8562 29 40.910
MFP 4 2 3 4 4 31.5899 - 31.6388 300 100.660 31.6079 171 57.430
IH 21 10 11 11 21 1.9797 - 1.1861 210 2782.880 1.1858 114 1206.340
CSE1 20 10 2 12 1 0.0201 - 0.0219 3 39.330 0.0220 3 20.250
PSM 7 3 2 5 2 0.9202 - 0.9266 153 104.170 0.9227 87 67.470
EB1 10 1 1 2 2 3.1225 39.9526 2.0532 300 299.380 2.0276 300 295.420
EB2 10 1 1 2 2 2.0201 39.9547 0.8150 120 103.400 0.8148 84 73.770
EB3 10 1 1 2 2 2.0575 3995311.0743 0.8157 117 116.390 0.8153 84 75.820
NN1 3 2 1 3 3 13.9782 14.6882 18.4813 300 144.940 79.2681 300 127.130
NN2 2 1 1 2 2 2.2216 - 2.2216 15 7.070 2.2216 9 4.060
NN4 4 3 2 4 4 1.3627 - 1.3884 204 70.200 1.3802 156 51.480
NN8 3 2 2 3 3 2.8871 78281181.1490 2.9522 240 84.510 2.9345 180 51.830
NN9b 5 2 3 4 2 28.9083 - 37.7461 300 272.250 32.1222 300 129.920
NN11b 16 5 3 3 3 0.1037 - 0.1596 15 86.770 0.1566 9 366.890
NN15 3 2 2 4 1 0.1039 - 0.1201 6 4.000 0.1194 6 3.740
NN16 8 4 4 4 8 0.9557 - 0.9699 36 32.200 0.9656 48 37.950
NN17 3 1 2 2 1 11.2182 - 11.2538 270 81.480 11.2381 117 32.160

z2. Then the linear system (5.1.1) becomes:
ẋ = Ax+B1w +Bu,
z1 = Cz11 x+Dz1

12u,
z2 = Cz21 x+Dz2

12u,
y = Cx.

(5.6.1)

MIXED H2/H∞ CONTROL: BMI OPTIMIZATION APPROACH 97

The mixed H2/H∞ control problem is to find a static output feedback gain F
such that, for u = Fy, the H2-norm of the closed loop from w to z2 is minimized,
while the H∞-norm from w to z1 is less than some imposed level γ [31, 118,
151].

This problem leads to the following optimization problem with two BMI
constraints [151]:

min
F,P1,P2,Z

trace(Z)

s.t.
[
ATFP1+P1AF +(Cz1F)TCz1F P1B1

BT1 P1 − γ2I

]
≺ 0,[

ATFP2 + P2AF P2B1
BT1 P2 −I

]
≺ 0,[

P2 (Cz2F)T
Cz2F Z

]
� 0, P1 � 0, P2 � 0,

(5.6.2)

where AF := A+BFC, Cz1F := Cz11 +Dz1
12FC and Cz2F := Cz21 +Dz2

12FC. Note
that if C = Inx , the identity matrix, then this problem becomes an optimization
problem of mixed H2/H∞-control for static state feedback design considered in
[151]. In this section, we tested Algorithm 4.3.2 for the static state feedback
and output feedback cases. We only tested Algorithm 4.3.1 for the second case.

Case 1.(The static state feedback case (C = Inx)). First, we applied the
method in [151] to find an initial point via solving two optimization problems
with LMI constraints. Then, we used the same approach as in the previous
sections to transform problem (5.6.2) into an optimization problem with psd-
convex-concave matrix inequality constraints. Finally, Algorithm 4.3.2 was
implemented to solve the resulting problem. For convenience of implementation,
we introduced a slack variable η and then replaced the objective function in
(5.5.1) by f(x) = η2 with an additional constraint trace(Z) ≤ η2.

In the first case, we tested Algorithm 4.3.2 with three problems. The first
problem was also considered in [92] with:

A=

−1.40 − 0.49 − 1.93
−1.73 − 1.69 − 1.25
0.99 2.08 − 2.49

 , B1 =

−0.16 − 1.29
0.81 0.96
0.41 0.65

 , B =

0.25
0.41
0.65

 ,
Cz11 =

[
−0.41 0.44 0.68

]
, Cz21 =

[
−1.77 0.50 −0.40

]
,

Dz1
12 = Dz2

12 = 1, and γ = 2.

If the tolerance ε = 10−3 was chosen then Algorithm 4.3.2 converged after 17
iterations and reported the value η = 0.7489 with:

F =
[
1.9485 0.3990 −0.2119

]
.

98 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

This result is similar to the one shown in [151]. If we regularized the subproblem
(4.3.4) with ρ = 0.5× 10−3 and Q = IPF then the number of iterations reduced
to 10 iterations.

The second problem is DIS4 in COMPleib [119]. In this problem, we set Cz11 = Cz21
and Dz1

12 = Dz2
12 as in [151]. Algorithm 4.3.2 converged after 24 iterations with

the same tolerance ε = 10−3. It reported η = 1.6925 and γ = 1.1996 with:

F =


−0.8663 −0.6504 −1.1115 −0.1951 −0.6099 0.2065
0.1591 −0.4941 −0.6322 −0.5409 −1.2895 0.2774
−0.7017 −0.0785 0.6121 −0.8919 0.2518 −0.2354
−0.0522 −0.5556 −0.5838 0.4497 −1.4279 −0.6677

 .
If we regularized the subproblem (4.3.4) with ρ = 0.5× 10−3 and Q = IPF then
the number of iterations was 18.

The third problem is AC16 in COMPleib [119]. In this example we also chose
Cz11 = Cz21 and Dz1

12 = Dz2
12 as in the previous problem. As mentioned in [151], if

we chose a starting value γ0 = 100, then the LMI problem could not be solved
by the SDP solvers (e.g., Sedumi, SDPT3) due to numerical problems. Thus,
we rescaled the LMI constraints by using the same trick as in [151]. After doing
this, Algorithm 4.3.2 converged after 298 iterations with the same tolerance
ε = 10−3. The value of η reported in this case was η = 12.3131 and γ = 20.1433
with:

F =
[
−1.8533 0.1737 0.6980 6.4208
4.2672 −0.9668 −1.5952 −2.9240

]
.

The results obtained by Algorithm 4.3.2 for solving problems DIS4 and AC16 in
this paper confirm the results reported in [151].

Case 2.(The static output feedback case). As before, we first propose a procedure
called Phase 1 to determine a starting point for Algorithms 4.3.1 and 4.3.2. We
described this phase algorithmically as follows.

Algorithm 5.6.1.(Phase 1: Determine a starting point x̄0).
Step 1. If α0(AT +A) < 0 then set F 0 = 0. Otherwise, go to Step 3.
Step 2. Solve the following linear SDP problem:

min
P1,P2,Z

trace(Z)

s.t.
[
ATF 0P1+P1AF 0+(Cz1F 0)TCz1F 0 P1B1

BT1 P1 − γ2I

]
≺ 0,[

ATF 0P2 + P2AF 0 P2B1
BT1 P2 −I

]
≺ 0,[

P2 (Cz2F 0)T
Cz2F 0 Z

]
� 0, P1 � 0, P2 � 0,

(5.6.3)

MIXED H2/H∞ CONTROL: BMI OPTIMIZATION APPROACH 99

where AF 0 = A+BF 0C, Cz1F 0 = Cz11 +Dz1
12F

0C and Cz2F 0 = Cz21 +Dz2
12F

0C. If
this problem has an optimal solution P 0

1 , P
0
2 and Z0 then terminate Phase 1.

Set x̄0 := (F 0, P 0
1 , P

0
2 , Z

0) for a starting point of Algorithm 4.3.1 or Algorithm
4.3.2 in Phase 2. Otherwise go to Step 3.
Step 3. Solve the following LMI feasibility problem:

Find Q � 0, W and Z such that:AQ+QAT+BW+WTBT B1 (C1+D12W)T
BT1 −Iw O

C1+D12W O −γ2Iz

≺0, (5.6.4)

[
AQ+QAT +BW+WTBT B1

BT1 −Iw

]
≺0,

[
Q (C1Q+D12W)T

C1Q+D12W Z

]
�0,

to obtain a solution Q∗, W ∗ and Z∗. Set F ∗ := W ∗(Q∗)−1C+, where C+ is the
pseudo-inverse of C. Solve again problem (5.6.3) with F 0 := F ∗. If problem
(5.6.3) has a solution then terminate Phase 1. Otherwise, perform Step 4.
Step 4. Solve the following optimization with BMI constraints:

max
β,F,P1�0,P2�0

β

s.t. ATFP1+P1A
T
F +(Cz1F)TCz1F +γ−2P1B1B

T
1P1�−2βP1,

ATFP2 + P2AF + P2B1B
T
1 P2 � −2βP2

to obtain an optimal solution F ∗ corresponding to the optimal value β∗. If
β∗ > 0 then set F 0 := F ∗ and go back to Step 2 to determine P 0

1 , P 0
2 and Z0.

Otherwise, declare that no strictly feasible point of problem (5.6.2) is found.
End.

Since at Step 4 of Algorithm 5.6.1 requires one to solve an optimization problem
with two BMI constrains, this task is usually expensive. In our implementation,
we only terminate this step after finding a strictly feasible point with a feasible
gap 0.1 as before. If matrix C is invertible then matrix F ∗ at Step 3 is
F ∗ = W ∗(Q∗)−1C−1. Hence, we can ignore Step 4 of Phase 1.

To avoid a numerical problem in Step 3, we can reformulate problem (5.6.4)
equivalently to the following one:

Find Q � 0, W and Z such that:AQ+QAT+BW+WTBT B1 (C1+D12W)T
BT1 −γIw O

C1+D12W O −γIz

≺0,[
Q (C1Q+D12W)T

C1Q+D12W Z

]
�0.

100 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

Table 5.4: Mixed H2/H∞ synthesis benchmarks on COMPleib plants reported
by Algorithm 4.3.1.

Problem Results and Performances (γ = 4) Results and Performances (γ = 10)
Name H2/H∞ iter time[s] H2/H∞ iter time[s]
AC1 0.0587 / 0.0993 2 2.410 0.0587 / 0.0994 1 2.000
AC2 0.1071 / 0.1730 1 2.920 0.1071 / 0.1730 1 2.720
AC3 - / - - - 4.5720 / 5.1337 57 94.620
AC6 - / - - - 3.9951 / 5.3789 28 61.460
AC7 0.0438 / 0.0610 34 50.080 0.0441 / 0.0611 3 6.110
AC11 4.0914 / 3.9983 110 150.340 - / - - -
AC12 0.0924 / 0.3486 - 73.46 - / - - -
AC17 - / - - - 4.2061 / 6.6126 165 100.130
HE1 0.0973 / 0.2046 1 34.860 0.0973 / 0.2075 1 35.260
HE2 - / - - - 4.7326 / 9.8059 135 97.560
REA1 1.8217 / 1.4795 51 23.140 1.8296 / 1.4495 300 172.700
REA2 3.5021 / 3.5122 72 36.630 3.5024 / 3.4913 141 107.180
DIS1 - / - - - 4.2341 / 4.6736 44 275.280
DIS2 1.5080 / 1.8410 45 17.960 1.5080 / 1.8400 45 20.280
DIS3 2.0580 / 1.7969 60 68.530 2.0579 / 1.7727 66 136.280
DIS4 1.6932 / 1.1899 72 69.000 1.6932 / 1.1899 72 68.120
AGS - / - - - 7.0356 / 8.2053 9 82.160
PSM 1.5157 / 0.9268 237 241.210 1.5158 / 0.9269 264 281.580
EB2 0.9023 / 0.8142 1 124.200 0.9012 / 0.8142 1 122.170
EB3 0.9144 / 0.8143 1 123.470 0.9137 / 0.8143 1 126.810
NN2 1.5652 / 2.4771 18 20.540 1.5651 / 2.4811 24 37.010
NN4 1.8778 / 2.0501 202 154.49 1.8928 / 2.2496 257 139.900
NN8 2.3609 / 3.9999 21 15.71 2.3383 / 4.5520 99 68.700
NN15 0.0490 / 0.1366 24 52.410 0.0488 / 0.1392 27 49.940
NN16 0.3544 / 0.9569 108 126.160 0.3910 / 0.9573 300 405.340

We tested Algorithm 4.3.1 described above for several problems in COMPleib
with the level values γ = 4 and γ = 10. In these examples, we assume that the
output signals z1 ≡ z2. Thus we have Cz11 = Cz21 = C1 and Dz1

12 = Dz2
12 = D12.

The parameters and the stopping criterion of the algorithm were chosen as in
Section 5.3. The computational results are reported in Table 5.4 with γ = 4
and γ = 10. Here, H2/H∞ are the H2 and H∞ norms of the closed-loop
systems for the static output feedback controller, respectively. With γ = 10,
the computational results show that Algorithm 4.3.1 satisfies the condition
‖P∞(s)‖∞ ≤ γ = 10 for the test problems except problems AC11 and AC12.
While, with γ = 4, there are 6 problems reported infeasible, which are denoted
by “-”. The H∞-constraint of two problems AC11 and NN8 is active with
respect to γ = 4.

We also tested Algorithm 4.3.2 by using the same parameters as in Algorithm
4.3.1 above. The results are reported in Table 5.5. With γ = 10 Algorithm
4.3.2 solved all the problems, while, with γ = 4, there are 5 problems reported

CONCLUSION 101

Table 5.5: Mixed H2/H∞ synthesis benchmarks on COMPleib plants reported
by Algorithm 4.3.2.

Problem Results and Performances (γ = 4) Results and Performances (γ = 10)
Name H2/H∞ iter time[s] H2/H∞ iter time[s]
AC1 0.0585 / 0.0990 3 4.22 0.0585 / 0.0990 3 4.27
AC2 0.1067 / 0.1723 6 7.31 0.1070 / 0.1727 3 7.15
AC3 5.2770 / 3.9999 51 281.53 4.5713 / 5.1298 18 19.18
AC6 - / - - - 4.0297 / 4.8753 283 330.64
AC7 0.0415 / 0.0961 1 3.39 0.0420 / 0.1286 2 3.91
AC8 1.2784 / 2.2288 43 60.78 1.3020 / 2.5719 23 31.59
AC11 4.0704 / 4.0000 76 175.75 4.0021 / 5.1949 117 122.86
AC12 0.0924 / 0.3486 18 73.46 1.4454 / 1.6444 300 234.13
AC17 - / - - - 4.1228 / 6.6472 2 11.620
HE1 0.1123 / 0.2257 2 131.18 0.0973 / 0.2080 1 30.97
HE2 - / - - - 4.7302 / 9.8931 75 55.48
REA1 1.8214 / 1.4740 30 25.64 1.8213 / 1.4730 30 26.65
REA2 3.5014 / 3.5180 42 22.09 3.5015 / 3.5209 45 23.26
DIS1 - / - - - 2.8505 / 4.7904 15 30.51
DIS2 1.5079 / 1.8500 18 7.92 1.5079 / 1.8520 21 7.92
DIS3 2.0577 / 1.7934 27 25.03 2.0577 / 1.7766 30 24.54
DIS4 1.6926 / 1.1952 21 18.62 1.6926 / 1.2009 24 21.55
AGS - / - - - 7.0332 / 8.2035 8 196.73
PSM 1.5115 / 0.9248 177 160.41 1.5115 / 0.9248 180 167.31
EB2 0.7765 / 1.0828 7 9.70 0.7768 / 1.0867 10 13.16
EB3 0.8406 / 0.9249 1 3.21 0.8383 / 0.9418 1 2.93
EB4 1.0147 / 1.0707 6 59.55 0.9981 / 1.2146 12 111.26
NN2 1.5651 / 2.4834 12 5.37 1.5651 / 2.4876 12 5.49
NN4 1.8778 / 2.0501 202 154.49 1.8779 / 2.0519 213 161.00
NN8 2.3609 / 3.9999 21 15.71 2.3376 / 4.6514 15 6.57
NN15 0.0820 / 0.1010 42 18.75 0.0771/0.1012 24 10.47
NN16 0.3187 / 0.9574 90 96.44 0.3319 / 0.9572 258 303.87

infeasible. The H∞-constraint of three problems: AC8, AC11 and NN8 is active
in this algorithm.

As we can see from Tables 5.4 and 5.5 that the results given by Algorithm 4.3.1
are similar to Algorithm 4.3.2 in the majority of the tested problems. However,
Algorithm 4.3.1 encounters a difficulty for solving this example compared to
Algorithm 4.3.2.

5.7 Conclusion

In this chapter we have shown the applications of two algorithms developed
in Chapter 4 to solve optimization problems with BMI constraints arising

102 BMI OPTIMIZATION IN ROBUST CONTROLLER DESIGN

from static state/output feedback controller design. One main task of these
algorithms is to find a starting point in the interior of the feasible set of the
given problem. We have proposed several new procedures to find such a point
which can be carried out in finite steps. Both algorithms have been tested
via several numerical examples in static feedback controller design using the
data from the COMPLeib library. We have also compared our codes with other
software tools such as PENBMI, HIFOO and LMIRank. The numerical tests
have shown that our codes provided competitive results to those solvers for the
majority of the tested problems.

Part II

Decomposition in Separable
Optimization

103

Chapter 6

Existing approaches in
separable optimization

Many optimization problems fall into the class of large-scale and separable
optimization and need to be solved in a parallel and distributed manner. Such
problems appear in many fields of science and engineering such as graph theory,
networks, transportation, distributed model predictive control, distributed
estimation, multistage stochastic optimization, compressive sensing and machine
learning, see e.g. [14, 42, 46, 77, 100, 113, 114, 157, 165, 174, 203, 206, 207,
212, 218] and the references quoted therein. Solving large-scale optimization
problems is still a challenge in many applications [43] due to the limitations
of computational devices and computer systems. Recently, thanks to the
development of parallel and distributed computing systems, many large-scale
problems have been solved by using the framework of decomposition. However,
methods and algorithms for solving this type of problems, which can be run
in a parallel or distributed manner, are still limited [17, 43]. Part II of the
thesis focuses on developing numerical solution methods for solving separable
optimization problems based on decomposition approaches. This part will
be divided into five chapters. In Chapter 6, we mainly review some related
existing methods for solving separable optimization problems, describe the
Lagrangian dual decomposition framework and recall some concepts related to
parallel and distributed algorithms and performance profiles. Chapters 7, 8 and
9 present alternatively two smoothing techniques in the dual decomposition
framework and propose different decomposition methods for solving separable
convex optimization problems. An extension to the nonconvex case is considered
in Chapter 10.

105

106 EXISTING APPROACHES IN SEPARABLE OPTIMIZATION

Outline of Chapter 6. This chapter is organized as follows. First, we state our
problem formulations both in the convex and nonconvex case and the optimality
condition of these problems in Section 6.1. Next, we briefly review some existing
but related methods for solving such problems in Section 6.2. Then, we recall the
Lagrangian dual decomposition approach for separable convex optimization in
Section 6.3. Section 6.4 recalls some concepts related to parallel and distributed
algorithms. The last section briefly describes performance profile concepts.

6.1 Problem statements

From now on, we focus on separable optimization problems both in the convex
and nonconvex case. For later references, we state these problems separately in
the following two subsections.

Separable convex optimization

We are interested in the following separable convex optimization problem:

φ∗ :=


min
x∈Rn

φ(x) :=
M∑
i=1

φi(xi)

s.t.
M∑
i=1

(Aixi − bi) = 0,

xi ∈ Xi, i = 1, · · · ,M,

(SepCOP)

where x := (x1, x2, . . . , xM) ∈ Rn is a vector of decision variables, φi : Rni → R
is convex, Xi ∈ Rni is a nonempty, closed convex set, Ai ∈ Rm×ni , bi ∈ Rm

for all i = 1, . . . ,M , and n1 + n2 + · · · + nM = n. As usual, we refer to the
first constraint as a coupling linear constraint and the last constraints as local
convex constraints.

In principle, all convex programming problems can be brought into this separable
form by doubling the variables, i.e. by introducing new variables xi and then
imposing the constraint xi = x. Despite the increasing number of variables,
treating convex programming problems in such a way may be useful in some
situations, see, e.g. [73, 77]. Let X := X1 ×X2 × · · · ×XM be the Cartesian
product of Xi, A := [A1, A2, · · · , AM] be a matrix formed from M blocks Ai,
i = 1, . . . ,M and b :=

∑M
i=1 bi. Then the first constraint of (SepCOP) can

shortly be written as Ax− b = 0.

PROBLEM STATEMENTS 107

Alternatively to (SepCOP), we can also consider the maximization formulation:

φ∗ :=


max
x∈Rn

φ(x) :=
M∑
i=1

φi(xi)

s.t.
M∑
i=1

(Aixi − bi) = 0,

xi ∈ Xi, i = 1, · · · ,M.

(SepCOPmax)

Here, the objective functions φi is assumed to be concave for i = 1, . . . ,M . Since
max φ(x) = −min{−φ(x)}, both formulations (SepCOP) and (SepCOPmax) are
equivalent.

Fundamental assumption and optimality condition. Problem (SepCOP) is
said to satisfy the Slater constraint qualification condition if:

ri(X) ∩ {x ∈ Rn | Ax = b} 6= ∅, (6.1.1)

where ri(X) is the relative interior of the convex set X. Let us denote by X∗ the
solution set of (SepCOP). Throughout Part II, we assume that the following
assumption is satisfied [164].
Asumption A.6.1.7. The solution set X∗ is nonempty and either the Slater
qualification condition for problem (SepCOP) holds or Xi is polyhedral. The
function φi is proper, lower semicontinuous and convex in Rni for i = 1, . . . ,M .

Note that the objective function φ is not necessarily smooth. For example,
φ(x) = ‖x‖1 =

∑n
i=1 |x(i)|, which is nonsmooth and separable, see Example

1.1.4. In the maximization case (SepCOPmax), the objective function φ is
assumed to be proper, upper semicontinuous and concave in Rn, i = 1, . . . ,M
in Assumption A.6.1.7. We use the same Assumption A.6.1.7 for this case
without repeating in the next chapters.

The optimality condition for (SepCOP) is expressed as:{
0 ∈ ∂φ(x) +AT y +NX(x),
0 = Ax− b.

(6.1.2)

Here, ∂φ(x) is the subdifferential of the convex function φ at x, NX(x) is the
normal cone of the convex set X at x and y is the Lagrange multiplier associated
with the coupling constraint Ax − b = 0. Note that the first line of (6.1.2)
explicitly ensures the condition x ∈ X. A point (x, y) ∈ Rn ×Rm that satisfies
(6.1.2) is called a Karush-Kuhn-Tucker (KKT) point of (SepCOP).

108 EXISTING APPROACHES IN SEPARABLE OPTIMIZATION

Alternatively, the optimality for the maximization problem (SepCOPmax) is
expressed as: {

0 ∈ ∂φ(x) +AT y −NX(x),
0 = Ax− b.

(6.1.3)

Here, ∂φ(x) denotes the superdifferential of the concave function φ at x. Under
AssumptionA.6.1.7, the optimality condition (6.1.2) (resp. (6.1.3)) is necessary
and sufficient for the solution of (SepCOP) (resp. (SepCOPmax)).

Separable nonconvex optimization

In the nonconvex case, we are interested in the following formulation:

φ∗ :=


min
x∈Rn

φ(x) :=
M∑
i=1

[gi(xi) + hi(Fi(xi))]

s.t.
M∑
i=1

(Aixi − bi) = 0,

xi ∈ Xi, i = 1, · · · ,M,

(SepNCOP)

where xi, Ai and bi are defined as in (SepCOP) for i = 1, . . . ,M . The function
gi : Rni → R is assumed to be proper, lower semicontinuous and convex (and
possibly smooth), while hi : Rmi → R is proper, lower semicontinuous and
convex but not necessarily smooth. The inner function Fi : Rni → Rmi is
continuously differentiable on its domain for i = 1, . . . ,M . If Fi is affine or hi
vanishes for i = 1, . . . ,M then problem (SepNCOP) coincides with the separable
convex programming problem (SepCOP).

Note that if either nonconvex coupling constraints or local nonconvex constraints
are present then one can use slack variables and penalty functions to transform
the given problem into (SepNCOP). We do not discuss these transformations
in detail in this section.

6.2 Related existing approaches

This section briefly reviews some related existing approaches for solving separable
optimization problems both in the convex and nonconvex case.

RELATED EXISTING APPROACHES 109

Methods for separable convex optimization

Sparse large-scale convex optimization problems can be solved efficiently by
centralized optimization methods such as interior point, SQP and gradient-type
methods thanks to the development of the underlying computational sparse
linear algebra routines. In this thesis, we are interested in convex programming
problems which possess the separability and dynamical structure (in the sense
of dynamic topology and distributed location of problem data and devices).
The first property leads to the decomposability of the problem and the second
one may cause some difficulty for centralized optimization solvers.

In the literature, several approaches have been proposed for solving problem
(SepCOP). For example, (augmented) Lagrangian relaxation and subgradient-
type methods of multipliers [17, 61, 87, 136, 164, 206], Fenchel’s dual
decomposition [89], alternating direction methods (ADM) [32, 62, 77, 93, 94,
115], proximal point-type methods [16, 39, 201], splitting methods [63, 64],
interior point methods [113, 131, 133, 171, 218], mean value cross decomposition
[101], partial inverse method [176] and bundle methods [175] have been proposed
among many others.

From the application side, problems of the form (SepCOP) cover very well
resource allocation and network utility maximization problems [211], wireless and
DSL spectrum management problems [107, 125, 126, 202, 203, 214], distributed
model predictive control [37, 208], multistage stochastic optimization problems
[23, 131, 218, 219] and machine learning [32, 174, 175] among many others.
A good tutorial on decomposition methods for network utility maximization
problems can be found in [154]. Particular approaches have also been proposed
to those applications which aim at exploiting specific structure of the problems.

One of the classical approaches for solving (SepCOP) is Lagrangian dual
decomposition [14, 17]. The main idea of this approach is to solve the dual
problem by means of subgradient-type methods. It has been recognized in
practice that these methods are usually slow and numerically sensitive to the
choice of step sizes, see e.g. [142, 144]. In the special case of strongly convex
primal problem, the dual function is differentiable. Consequently, classical
gradient methods can be applied to solve the dual problem.

Recently, Nesterov [142] developed the smoothing techniques for solving
nonsmooth convex optimization problems based on a fast gradient scheme which
was introduced in his pioneering work [137]. The fast gradient schemes have
been applied in numerous applications including image processing, compressed
sensing, machine learning, networks and system identification, see, e.g. [3, 22,
77, 90, 91, 147, 212].

110 EXISTING APPROACHES IN SEPARABLE OPTIMIZATION

Exploiting Nesterov’s smoothing idea in [140], Necoara and Suykens [134] applied
those smoothing techniques to the dual problem in the framework of Lagrangian
dual decomposition and then used the fast gradient scheme to maximize the
smoothed dual function. This resulted in a new variant of dual decomposition
algorithms for solving separable convex optimization. The authors proved that
the rate of convergence of their algorithm is O

(1
k

)
which is much better than

O
(

1√
k

)
in the subgradient-type methods of multipliers considered recently in

[61, 109, 136], where k is the iteration counter. A main disadvantage of this
scheme is that the smoothness parameter needs to be given a priori. Moreover,
this parameter crucially depends on a given desired accuracy. Since the Lipschitz
constant of the gradient of the objective function in the smoothed dual problem
is inversely proportional to the smoothness parameter, the algorithm usually
generates short steps towards a solution of the dual problem although the rate
of convergence is O

(1
k

)
. In [105] the authors studied a distributed method for

unconstrained optimizations where they proved that the rate of convergence of
the method is O

(
log k
k

)
.

Methods for separable nonconvex optimization

Unlike in convex optimization, strong duality is no longer preserved in the
nonconvex case in general. Consequently, Lagrangian dual decomposition
techniques are not directly applicable to nonconvex problems. Moreover,
standard optimization techniques such as sequential quadratic programming
require a globalization strategy such as line-search or trust-region procedures.
These procedures are hard to implement in a parallel or distributed manner
due to their global information requirement.

In order to avoid global information, penalty function or augmented Lagrangian
methods can be applied. However, using penalty functions usually leads to
nonsmoothness of the primal subproblems while the augmented Lagrangian
functions encounter a crossproduct term which is not separable. Many attempts
have been proposed to overcome the second difficulty. For instance, Bertsekas
[15] proposed a convexification procedure by means of proximal point methods
instead of augmented Lagrangian functions. Stephanopoulos and Westerberg
in [178] approximated the crossproduct term by linear functions which led to
a heuristic, complex and poorly performing method. Tanikawa and Mukai
in [183] proposed a new approach based on the well-known Fletcher smooth
augmented Lagrangian function. The authors used the trick that by introducing
additional variables, the augmented Lagrangian function was decomposable.
This method was further extended to the inequality constraint case by Tatjewski
in [185]. However, only local convergence of the methods was considered in both

LAGRANGIAN DECOMPOSITION IN SEPARABLE CONVEX PROGRAMMING 111

papers. Tatjewski in [184] proposed a three-level optimization method to solve
(SepNCOP) by separating the quadratic term of the augmented Lagrangian
function into M components via additional slack variables. Recently, Hamdi
[88] combined the augmented Lagrangian function, proximal point method
and alternating direction method of multipliers to obtain a new method for
solving (SepNCOP). Another approach which is based on sequential convex
programming was proposed in [133] for solving distributed nonconvex optimal
control problems. From practical side, a good review of alternating direction
methods of multipliers for distributed convex and nonconvex optimization can
be found in [32].

6.3 Lagrangian decomposition in separable convex
programming

In this section, we briefly recall the Lagrangian dual decomposition in separable
convex optimization. For more details, we refer the reader to [14, 17].

Let us define the Lagrange function of the problem (SepCOP) with respect to
the coupling constraint Ax− b = 0 as:

L(x, y) := φ(x) + yT (Ax− b) =
M∑
i=1

[
φi(xi) + yT (Aixi − bi)

]
,

where y ∈ Rm is the multiplier associated with the coupling constraint Ax−b =
0. A point (x∗, y∗) ∈ X ×Rm is called a saddle point of L if:

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀x ∈ X, ∀y ∈ Rm.

Next, we define the Lagrange dual function g of the problem (SepCOP) as:

g(y) := min
x∈X

{
L(x, y) := φ(x) + yT (Ax− b)

}
. (6.3.1)

and then write down the dual problem of (SepCOP) as:

g∗ := max
y∈Rm

g(y). (6.3.2)

By Assumption A.6.1.7 strong duality holds and we have:

g∗ = max
y∈Rm

g(y) strong duality= min
x∈X
{φ(x) | Ax = b} = φ∗.

Let us denote by Y ∗ the solution set of the dual problem (6.3.2). It is well-known
that Y ∗ is bounded due to Assumption A.6.1.7.

112 EXISTING APPROACHES IN SEPARABLE OPTIMIZATION

It is important to note that the dual function g(y) defined by (6.3.1) can be
computed separately as:

g(y) =
M∑
i=1

gi(y), (6.3.3)

where

gi(y) := min
xi∈Xi

{
φi(xi) + yT (Aixi − bi)

}
, i = 1, . . . ,M. (6.3.4)

We call the minimization problems in (6.3.4) the primal subproblems. We
denote by x∗i (y) a solution of the primal subproblem i for i = 1, . . . ,M and
x∗(y) := (x∗1(y), . . . , x∗M (y)). Note that if x∗i (y) is not unique for a given y then
gi is not differentiable at y (i = 1, · · · ,M). Consequently, g is not differentiable
at y. Numerical solution methods for maximizing the function g are a challenge.
The representation (6.3.3)-(6.3.4) is usually called a dual decomposition of the
dual function g.

6.4 Parallel algorithms vs distributed algorithms

In this section, we first briefly review some concepts in parallel and distributed
mechanism including parallel and distributed computing systems and parallel
and distributed optimization algorithms. Then we discuss some implementation
issues of distributed optimization algorithms. For more details of these fields,
we refer the reader to [6, 17, 18, 80, 168].

Parallel and distributed computing systems. Work on parallel and dis-
tributed computation spans several broad areas, such as the design of parallel
machines, parallel programming languages, parallel algorithm development and
analysis, and applications related issues [6, 17, 80, 168]. Roughly speaking,
parallel computing systems consist of several processors or computing units
that are located within a small distance of each other. Their main purpose is
to divide a given computational task into smaller ones that can be carried out
simultaneously in order to achieve a common goal. The communication between
processors or computing units is reliable and predictable. Distributed computing
systems are different in a number of ways. Processors or computing units may
be far apart, interprocessor communication is more problematic, communication
delays may be unpredictable and communication links themselves may be
unreliable [18]. In one view, a distributed computing system consists of
multiple autonomous computers or computing units that communicate through
a network. These computers or computing units interact with each other to

PARALLEL ALGORITHMS VS DISTRIBUTED ALGORITHMS 113

achieve a common goal. There are several ingredients related to a parallel and
distributed computing system such as global control mechanisms, synchronous
and asynchronous operations and processor interconnections [17]. On top of
a parallel and distributed computing system are computational algorithms.
Generally, a parallel algorithm, as opposed to a traditional sequential/serial
algorithm, is an algorithm which can specify and execute multiple operations
at each step and put the results back together again at the end to get the
correct result. Alternatively, a distributed algorithm is an algorithm designed
to run on multiple processors or computing units, without tight centralized
control. In principle, parallel and distributed algorithms usually depend on the
architecture of computing systems. However, they still possess some common
characterizations that can be studied independently without taking into account
the architecture of computing systems [6, 17].

Parallel and distributed optimization algorithms. When we refer to the
term parallel or distributed optimization algorithm we mean that this is an
optimization algorithm that can be implemented in a parallel or distributed
manner, respectively. In other words, it is a parallel or distributed algorithm for
solving optimization problems. In general, these optimization algorithms are
iterative methods. Their main step is to form a new iteration point by employing
the oracle at the current iteration [142]. In parallel or distributed optimization
methods, this step is usually divided in several tasks corresponding to solving the
subproblems concurrently. It is quite often in parallel optimization algorithms
that there are some tasks which require a global computation mechanism
working on global data and global computations. For instance, to evaluate the
objective function f at a given point x in an optimization algorithm we need to
know such a point x and then evaluate the objective value f(x). In this case the
point x is in fact global data and the evaluation of f(x) is a global computation.
An obvious way to collect global data and carry out global computations is
to offer a global control mechanism with a shared memory unit. However, in
parallel computing systems, there are several way to form and store global data
as well as to execute global computations [17]. In contrast to parallel algorithms
where global data or global operations are required, the data and the operations
in a distributed optimization algorithm are local. Each agent or node in a
distributed computing system only communicates and exchanges data internally
and possibly with its neighbours via communication links and data channels.
The computations only take place internally in each agent. In the following
chapters, we note that parallel and distributed optimization algorithms are
designed based on exploiting the specific structure of optimization problems
instead of exploiting the architecture of parallel and distributed computing
systems. More precisely, we concentrate on exploiting separability structure of
the problems by applying the dual decomposition framework. This approach

114 EXISTING APPROACHES IN SEPARABLE OPTIMIZATION

will be combined with other techniques in order to design different classes of
parallel and distributed algorithms for solving separable convex and nonconvex
optimization problems.

Implementation issues in distributed optimization algorithms. There are
several aspects concerning the implementation of a distributed optimization
algorithm. We end this section by presenting some points that we find
more related to our algorithmic development and implementation. First,
implementation of a globalization strategy such as line-search and filtering
procedures is a difficult operation in any distributed algorithm. Indeed, in order
to carry out such a globalization procedure, we need to evaluate the objective
values at certain points. In this case, global data and global computations
are required. Second, similarly to globalization strategies, checking stopping
criterion via optimality conditions in a distributed implementation is also
problematic due to global computation. Finally, synchronization and task
location also needs to be taken into account. In our algorithms in the next
chapters, each primal subproblems will be solved locally at each agent of a
distributed computing system, the workload of solving each subproblem may
be different. Therefore, it is important to allocate these workloads properly to
trade-off the computational time between each agent and to synchronize the
entire system.

6.5 Benchmarking optimization algorithms with
performance profiles

In order to compare different optimization algorithms, we can use a concept
call performance profile in [59]. We briefly present this concept here.

Recall that a performance profile is built based on a set S of ns algorithms
(solvers) and a collection P of np test problems. Suppose that we build a profile
based on computational time. However, the concept presented here can be used
for other measurements. Let us denote by

Tp,s := computational time required to solve problem p by solver s.

We wish to compare the performance of algorithm s on problem p with the
best performance of any algorithm on this problem. First, we compute the
performance ratio:

rp,s := Tp,s
min{Tp,ŝ | ŝ ∈ S}

.

BENCHMARKING ALGORITHMS WITH PERFORMANCE PROFILES 115

We assume that rM is a given parameter such that rM ≥ rp,s for all p and s,
and rp,s = rM if and only if solver s does not solve problem p. It was shown in
[59] that the choice of rM does not affect the performance evaluation. Then,
we consider the function ρ̃ defined by:

ρ̃s(τ̃) := 1
np

size {p ∈ P | rp,s ≤ τ̃} , τ̃ ∈ R+.

The function ρ̃s : R→ [0, 1] is the probability for solver s that a performance
ratio is within a factor τ̃ of the best possible ratio. We use the term “performance
profile” for the distribution function ρ̃s of a performance metric. This function
is nondecreasing, piecewise constant and continuous from the right at each
breakpoint.

It was claimed in [59] that a plot of the performance profile reveals all of the
major performance characteristics. In particular, if the set of problems P is
sufficiently large and representative of problems that are likely to occur in
applications, then solvers with large probability ρ̃s(τ̃) are to be preferred. We
can also plot the performance profiles in log-scale, i.e.:

ρs(τ) := 1
np

size {p ∈ P | log2(rp,s) ≤ τ := log2 τ̃} .

In this case, the number of wins is revealed via the value ρs(0). We will use the
function ρs to benchmark our algorithms in the next chapters.

Chapter 7

Dual decomposition
algorithms via the excessive
gap technique

In this chapter, we propose two decomposition algorithms for solving separable
convex optimization problems of the form (SepCOP). The basic idea is to
combine three techniques, namely Lagrangian dual decomposition, excessive
gap and primal-dual smoothing to build the algorithms. The main advantage
of these algorithms is that they automatically and simultaneously update the
algorithmic parameters and do not use any heuristic strategy to tune them.
This significantly improves the performance of the algorithms in practice. The
convergence of these algorithms is proved under weak conditions imposed on
the original problem. The rate of convergence is O(1

k), where k is the iteration
counter. All the algorithms developed in this chapter can be implemented in a
parallel or distributed manner.

Contribution of Chapter 7. Let us state the contribution of this chapter more
explicitly as follows:

a) By applying the smoothing technique via prox-functions to the primal
problem and the excessive gap condition, we prove an estimate for the
duality gap and the feasibility gap of the primal-dual problem. We also
show some properties of the smoothed dual function which will be used
to design the algorithms.

117

118 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

b) We propose two new decomposition algorithms for solving the separable
convex programming problem (SepCOP) which we call the decomposition
algorithm with two primal steps and the decomposition algorithm with two
dual steps, respectively. These algorithms are then modified to obtain two
different variants. Since all the algorithms are primal-dual, they allow us
to obtain simultaneously the primal and dual solutions of the primal and
dual problems.

c) The convergence of both algorithms and their variants is proved and the
convergence rate is established. We show that the convergence rate of the
algorithms is O(1

k) which is much higher than O(1√
k

) in the subgradient
methods studied recently in [14, 61, 136], where k is the iteration counter.

d) As a special case, we specialize the second algorithm to the strongly convex
case, where we obtain the convergence rate O(1

k2).

e) We also extend the proposed algorithms to the inexact case, where we
allow one to solve the primal subproblem of each component inexactly,
which is always the case in practice.

Outline of Chapter 7. The content of this chapter is organized as follows. In
the next section, we present a smoothing technique via proximity-functions and
show the relations between the original functions and the smoothed functions.
In Section 7.2, we first discuss the solution of the primal subproblems. Then,
we recall the excessive gap concept in [140] and extend it to an inexact case.
Sections 7.3 and 7.4 present two new algorithms which we call the decomposition
algorithm with two primal steps and the decomposition algorithm with two
dual steps, respectively. The convergence of these algorithms is proved and
the convergence rate is established. Two different variants of the proposed
algorithms are investigated in Section 7.5. Section 7.6 shows an application of
the algorithm in Section 7.4 to the strongly convex case and Section 7.7 is an
extension to the inexact case. A theoretical comparison and implementation
aspects are presented in Section 7.8. Section 7.9 is devoted to numerical tests.
We end this chapter by some conclusion.

7.1 Smoothing via proximity functions

In this section, we present a smoothing technique by using proximity functions
as proposed in [145]. This technique was further extended to Lagrangian dual
decomposition in [134]. We prove some estimates between the smoothed dual
functions and the original dual function g of (SepCOP).

SMOOTHING VIA PROXIMITY FUNCTIONS 119

For convenience, we recall the separable convex optimization problem defined
by (SepCOP) and its dual problem defined by (6.3.2) as follows:

φ∗ :=


min
x∈Rn

φ(x) :=
∑M
i=1 φi(xi)

s.t.
∑M
i=1(Aixi − bi) = 0,

xi ∈ Xi, i = 1, · · · ,M,

(SepCOP)

and
g∗ := max

y∈Rm
g(y), (7.1.1)

where Xi, φi, Ai and b are defined as before for i = 1, · · · ,M and the dual
function g is defined by (6.3.1).

Proximity functions and Bregman distance

Let C be a given nonempty, closed and convex set in Rn. The proximity
function of C is defined as follows [139].
Definition 7.1.1. A function pC is called a proximity function (σC-prox-
function) of a convex set C if pC is continuous, strongly convex with a convexity
parameter σC > 0 and C ⊆ dom(pC).

Let us give some examples. The simplest prox-function of C is the quadratic
form pC(x) := 1

2 ‖x− x
c‖22, where xc ∈ C is an arbitrary point. If C is

the standard simplex of the form C := {x ∈ Rn | x ≥ 0,
∑n
i=1 xi = 1} then

pC(x) :=
∑n
i=1 xi ln(xi) + ln(n) is an 1-prox-function of C, which is known as

the entropy function [145].

Associated with the prox function pC , we can define its conjugate function with
respect to C as:

p∗C(s) := max
x

{
sTx− pC(x) | x ∈ C

}
.

Since pC is strongly convex, p∗C is well-defined and differentiable at any point
s ∈ Rn. We denote by C̃ := {x | x = ∇p∗C(s), s ∈ Rn}. Clearly, the set C̃ is
convex and C̃ ⊆ C. Suppose that pC is differentiable on C. Then the following
mapping:

dC(x, y) := pC(y)− pC(x)−∇pC(x)T (y − x), ∀x ∈ C̃, y ∈ C, (7.1.2)

is called the Bregman distance function. It is obvious that, for x 6= y, dC(x, y) >
0 and dC(x, x) = 0. Moreover, for fixed x ∈ C̃, dC(x, ·) is strongly convex in y
and thus dC(x, y) ≥ σC

2 ‖y − x‖
2
2.

120 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

By strong convexity of pC , the point xc and the value p∗C defined as:

xc := argmin
x∈C

pC(x) and p∗C = pC(xc), (7.1.3)

are well-defined. Without loss of generality, we can assume that p∗C ≥ 0.
Otherwise, we shift p̃C(x) := pC(x) + r0, where the constant r0 is chosen such
that r0 + p∗C ≥ 0. As usual, we refer to xc as the prox-center point of C w.r.t.
pC . Let:

DC :=

sup
x∈C

pC(x) if C is bounded,

+∞ otherwise.
(7.1.4)

It is clear that:

0 ≤ p∗C ≤ pC(x) ≤ DC ≤ +∞, ∀x ∈ C.

If C is bounded then DC is finite and DC := maxx∈C pC(x).

Smoothing via prox-functions

Throughout this chapter, we assume that the following assumption is satisfied.
Asumption A.7.1.8. Each feasible set Xi of problem (SepCOP) is endowed
with a σXi-prox-function pXi such that 0 ≤ p∗Xi ≤ DXi < +∞ (i = 1, · · · ,M).

Note that Assumption A.7.1.8 is not very restrictive. Particularly, if Xi is
bounded for i = 1, · · · ,M then this assumption is satisfied. Let:

pX(x) :=
M∑
i=1

pXi(xi), p∗X :=
M∑
i=1

p∗Xi ≥ 0, and DX :=
M∑
i=1

DXi < +∞. (7.1.5)

We consider the following function:

g(y;β1) :=
M∑
i=1

gi(y;β1), (7.1.6)

where

gi(y;β1) := min
xi∈Xi

{
φi(xi)+yT (Aixi−bi)+β1pXi(xi)

}
, i = 1, · · · ,M. (7.1.7)

Here, β1 > 0 is a given parameter called smoothness parameter. Note that the
function g(·;β1) is well-defined due to the strong convexity of pXi . For our

SMOOTHING VIA PROXIMITY FUNCTIONS 121

convenient future reference, we also call the minimization problem in (7.1.7) as
the primal subproblem. We denote by x∗i (y;β1) the solution of (7.1.7), i.e.:

x∗i (y;β1) := arg min
xi∈Xi

{
φi(xi) + yT (Aixi − bi) + β1pXi(xi)

}
. (7.1.8)

In principle, we can use different parameters βi1 for i = 1, · · · ,M in (7.1.7).

Let xcXi be the prox-center of Xi and DXi be the quantity defined in (7.1.4)
for i = 1, · · · ,M . Under Assumption A.7.1.8, DXi is finite for i = 1, · · · ,M .
The following lemma shows the main properties of g(·;β1) whose proof can be
found, e.g., in [134, 140].
Lemma 7.1.1. Suppose that Assumptions A.6.1.7 and A.7.1.8 are satisfied.
Then, for any β1 > 0, the function gi(·;β1) defined by (7.1.7) is well-defined,
concave and continuously differentiable on Rm. Moreover, its gradient w.r.t. y
is given by:

∇ygi(y;β1) = Aix
∗
i (y;β1)− bi,

and it is Lipschitz continuous with a Lipschitz constant Lgi (β1) := ‖Ai‖2
β1σXi

, i =
1, · · · ,M . In addition, the following estimates hold:

gi(y;β1)− β1DXi ≤ gi(y) ≤ gi(y;β1), i = 1, · · · ,M.

Consequently, the function g(·;β1) defined by (7.1.6) is concave and continuously
differentiable. Its gradient is given by ∇gy(y;β1) := Ax∗(y;β1) − b and
is Lipschitz continuous with a Lipschitz constant Lg(β1) := 1

β1

∑2
i=1

‖Ai‖2
σXi

.
Moreover, it holds that:

g(y;β1)− β1DX ≤ g(y) ≤ g(y;β1), (7.1.9)

and

g(ỹ;β1) +∇yg(ỹ;β1)T (y − ỹ)− Lg(β1)
2 ‖y − ỹ‖2 ≤ g(y;β1), (7.1.10)

for all y and ỹ in Rm.

The inequalities (7.1.9) show that g(·;β1) is an approximation of g. Moreover,
g(y;β1) converges to g(y) as β1 tends to zero for a fixed y ∈ Rm.
Remark 7.1.1. Even without the boundedness of X, if the solution set X∗
of (SepCOP) is bounded then, in principle, we can bound the feasible set X
by a large compact set which contains all the sampling points generated by the
algorithms (see Section 7.3). However, in the first algorithm we do not use
DX in any computational step. It only appears in the theoretical complexity
estimates.

122 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

Now, we show the variation of the function g(y; ·) w.r.t. the parameter β1 in
the following lemma.
Lemma 7.1.2. Let y ∈ Rm. The function g(y; ·) defined by (7.1.6) is well-
defined, nondecreasing, concave and differentiable in R++. Moreover, it satisfies
the following inequality:

g(y;β1) ≤ g(y; β̃1) + (β1 − β̃1)pX(x∗(y; β̃1)), ∀β1, β̃1 ∈ R++, (7.1.11)

where x∗(y; β̃1) is defined by (7.1.8).

Proof. Since g =
∑M
i=1 gi and pX =

∑M
i=1 pXi , it is sufficient to prove the

inequality (7.1.11) for gi(y; ·), i = 1, · · · ,M . Let us fix y ∈ Rm and define
φi(xi;β1) := φi(xi)+yT (Aixi−bi)+β1pXi(xi), a function of two joint variables
xi and β1. Since φi(·; ·) is strongly convex w.r.t. xi and linear w.r.t. β1,
gi(y;β1) := min

xi∈Xi
φi(xi;β1) is well-defined and concave w.r.t. β1. Moreover, it

is differentiable w.r.t. β1 and ∇β1g(y;β1) = pi(x∗i (y;β1)) ≥ 0, where x∗i (y;β1)
is defined by (7.1.8). Thus gi(y; ·) is nonincreasing. By using the concavity of
gi(y; ·) we have:

gi(y;β1)≤gi(y; β̃1)+(β1−β̃1)∇β1gi(y; β̃1)=gi(y; β̃1)+(β1−β̃1)pi(x∗i (y; β̃1)).

By summing up these inequalities from i = 1 to M and using (7.1.5) we obtain
(7.1.11).

Approximation of the primal objective function

For a given β2 > 0, we define a mapping ψ(·;β2) from X to R by:

ψ(x;β2) := max
y∈Rm

{
(Ax− b)T y − β2

2 ‖y‖
2
2

}
. (7.1.12)

This function can be considered as a smoothed version of ψ(x) := max
y∈Rm

{
(Ax− b)T y

}
via the 1-prox-function p(y) := 1

2 ‖y‖
2. It is easy to show that the unique

solution of the maximization problem (7.1.12) is given explicitly as y∗(x;β2) =
1
β2

(Ax − b) and ψ(x;β2) = 1
2β2
‖Ax− b‖2. Therefore, ψ(·;β2) is well-defined

and differentiable on X. Let

f(x;β2) := φ(x) + ψ(x;β2) = φ(x) + 1
2β2
‖Ax− b‖2 . (7.1.13)

Then f can be viewed as an approximation of the primal objective function φ
of problem (SepCOP). The next lemma summarizes the properties of ψ(·;β2).

SMOOTHING VIA PROXIMITY FUNCTIONS 123

Lemma 7.1.3. For any β2 > 0, the function ψ(·;β2) defined by (7.1.12) is a
quadratic function of the form ψ(x;β2) = 1

2β2
‖Ax− b‖2 on X. Its gradient

vector is given by:
∇xψ(x;β2) = 1

β2
AT (Ax− b), (7.1.14)

which is Lipschitz continuous with a Lipschitz constant Lψ(β2) := 1
β2
‖A‖22.

Moreover, the following estimate holds for all x, x̂ ∈ X:

ψ(x;β2)≤ψ(x̂;β2)+
M∑
i=1

[
∇xiψ(x̂;β2)T(xi−x̂i)+Lψi (β2)

2 ‖xi−x̂i‖22

]
[1]

, (7.1.15)

where Lψi (β2) := M
β2
‖Ai‖22 for i = 1, · · · ,M .

In addition, the following estimates hold:

f(x;β2)− 1
2β2
‖Ax− b‖22 = φ(x) ≤ f(x;β2). (7.1.16)

Proof. Since ψ(x;β2) = 1
2β2
‖Ax− b‖2, it is sufficient to only prove (7.1.15).

Indeed, we have:

ψ(x;β2)−ψ(x̂;β2)−∇ψ(x̂;β2)T (x−x̂)= 1
2β2
‖A(x− x̂)‖22 . (7.1.17)

Then the inequality (7.1.15) follows from (7.1.17) by applying an elementary
inequality.

It is clear from (7.1.16) that f(·;β2) is an approximation of the objective function
φ of (SepCOP).
Remark 7.1.2. As we will see later in the algorithms in the next sections,
the separability of the term [·][1] on the right-hand side of (7.1.15) will be used
to generate and to solve the second primal subproblems in the algorithms in
parallel. Moreover, the Lipschitz constant Lψi (β2) := M

β2
‖Ai‖22 can be computed

distributively.

To conclude this section, let us define the smoothed dual problem of (6.3.2) for
further reference:

g∗(β1) := max
y∈Rm

g(y;β1). (7.1.18)

Problem (7.1.18) is convex. Moreover, since the function g(·;β1) is continuously
differentiable and its gradient is Lipschitz continuous for any β1 > 0, one can
apply the fast gradient method in [142] to solve this problem, see, e.g. [134].

124 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

7.2 Solution of primal subproblems and excessive
gap condition

In this section, we first show how we can solve the primal subproblems inexactly
and then we recall the excessive gap condition introduced by Nesterov in [140]
in the framework of decomposition.

Inexact solution of primal subproblems

In practice, solving the primal subproblem (7.1.7) exactly is only conceptual. In
this section, we assume that we only solve this problem up to a given accuracy.
In other words, the solution x∗i (y;β1) of (7.1.7) is approximated by:

x̃∗i (y;β1) :≈ arg min
xi∈Xi

{
φi(xi) + yT (Aixi − bi) + β1pXi(xi)

}
, (7.2.1)

for i = 1, · · · ,M , in the sense of the following definition.
Definition 7.2.1. We say that the point x̃∗i (y;β1) approximates x∗i (y;β1)
defined by (7.1.8) up to a given accuracy εi ≥ 0 if:

a) it is feasible to Xi, i.e. x̃∗i (y;β1) ∈ Xi;

b) and the following condition is satisfied:

0 ≤ hi(x̃∗i (y;β1); y, β1)− hi(x∗i (y;β1); y, β1) ≤ β1σXi
2 ε2

i , (7.2.2)

where hi(xi; y, β1) := φi(xi) + yT (Aixi − bi) + β1pXi(xi) for i = 1, · · · ,M .

Note that the condition (7.2.2) is computable. In practice, we often meet
the case where Xi is simple such that the projection on Xi can be computed
efficiently. Hence, one can apply classical convex optimization algorithms to
solve (7.2.1) up to a given accuracy such that a) and b) are satisfied.

Since hi(·; y, β1) is strongly convex with a convexity parameter β1σXi > 0, one
can estimate:

β1σXi
2 ‖x̃∗i (y;β1)−x∗i (y;β1)‖2≤hi(x̃∗i (y;β1); y, β1)−hi(x∗i (y;β1); y, β1), (7.2.3)

where hi(·; y, β1) is defined as in Definition 7.2.1. Consequently, we have:

‖x̃∗i (y;β1)− x∗i (y;β1)‖ ≤ εi, i = 1, · · · ,M.

SOLUTION OF PRIMAL SUBPROBLEMS AND EXCESSIVE GAP CONDITION 125

Let x̃∗(y;β1) := (x̃∗1(y;β1), . . . , x̃∗M (y;β1)) and

∇̃yg(y;β1) := Ax̃∗(y;β1)− b. (7.2.4)

The quantity ∇̃yg(·;β1) can be referred to as an approximation of the gradient
∇yg(·;β1) defined in Lemma 7.1.1. If we denote by ε := (ε1, . . . , εM)T the
vector of accuracies then we can easily estimate:∥∥∥∇̃yg(y;β1)−∇yg(y;β1)

∥∥∥ = ‖A(x̃∗(y;β1)− x∗(y;β1))‖ ≤ ‖A‖ ‖ε‖ . (7.2.5)

Excessive gap condition

Since the primal-dual gap of the primal and dual problems (SepCOP)-(7.1.1)
is measured by e(x, y) := φ(x)− g(y), if the gap e is equal to zero for a given
feasible point (x, y) then this point is an optimal solution of (SepCOP)-(7.1.1).
In this section, we apply the technique called excessive gap introduced by
Nesterov in [140] to the Lagrangian dual decomposition framework. We also
define an inexact excessive gap condition by modifying the exact one. More
precisely, we give the following definition.
Definition 7.2.2. We say that a point (x̄, ȳ) ∈ X ×Rm satisfies the excessive
gap condition w.r.t. two smoothness parameters β1 > 0 and β2 > 0 if:

f(x̄;β2) ≤ g(ȳ;β1), (7.2.6)

where f(·;β2) and g(·;β1) are defined by (7.1.13) and (7.1.6), respectively. For
a given tolerance δ ≥ 0, we say that (x̄, ȳ) satisfies an inexact excessive gap
condition (δ-excessive gap condition) w.r.t. two smoothness parameters β1 and
β2 if:

f(x̄;β2) ≤ g(ȳ;β1) + δ, (7.2.7)

The following lemma provides an upper bound estimate for the duality gap and
the feasibility gap of the problems (SepCOP)-(7.1.1).
Lemma 7.2.1. Suppose that (x̄, ȳ) ∈ X ×Rm and satisfies the δ-excessive gap
condition (7.2.7) w.r.t. two positive smoothness parameters β1 and β2 for δ ≥ 0.
Then for any y∗ ∈ Y ∗, we have:

−‖y∗‖ ‖Ax̄−b‖≤φ(x̄)−g(ȳ)≤β1DX + δ− 1
2β2
‖Ax̄−b‖2≤β1DX + δ, (7.2.8)

and

‖Ax̄− b‖ ≤ β2

{
‖y∗‖+

[
‖y∗‖2 + 2β1β

−1
2 DX + 2δβ−1

2

]1/2}
. (7.2.9)

126 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

Proof. Suppose that x̄ and ȳ satisfy the condition (7.2.7). For a given y∗ ∈ Y ∗,
one has:

g(ȳ) ≤ g(y∗) = min
x∈X

{
φ(x) + (Ax− b)T y∗

}
≤ φ(x̄) + (Ax̄− b)T y∗

≤ φ(x̄) + ‖Ax̄− b‖ ‖y∗‖ ,

which implies the first inequality of (7.2.8). By using Lemmas 7.1.1 and 7.1.3
we have:

φ(x̄)− g(ȳ)
(7.1.9)+(7.1.16)

≤ f(x̄;β2)− g(ȳ;β1) + β1DX −
1

2β2
‖Ax̄− b‖2 .

Now, by substituting the condition (7.2.7) into this inequality, we obtain the
second inequality of (7.2.8). Let ξ := ‖Ax− b‖. It follows from (7.2.8) that
ξ2 − 2β2 ‖y∗‖ ξ − 2β1β2DX − 2β2δ ≤ 0. The estimate (7.2.9) follows from this
inequality after a few simple calculations.

We note that the conclusion of Lemma 7.2.1 hold for any y ∈ Y ∗. Under
Assumption A.6.1.7, the dual solution set Y ∗ is bounded. One can define the
feasibility gap F(x) := ‖Ax− b‖ and:

RY ∗ := min
y∗∈Y ∗

‖y∗‖ , DY ∗ := min
y∗∈Y ∗

[
‖y∗‖+

(
‖y∗‖2 + 2DX

)1/2]
. (7.2.10)

Then RY ∗ andDY ∗ are finite. The estimates (7.2.8) and (7.2.9) can be simplified
as follows:

−RY ∗F(x̄) ≤ φ(x̄)− g(ȳ) ≤ β1DX + δ,

(7.2.11)
F(x̄) = ‖Ax̄− b‖ ≤ 2β2RY ∗ +

√
2β1β2DX + 2β2δ.

If δ = 0 and β1 = β2 then the feasibility gap is estimated by F(x̄) ≤ β2DY ∗ .

Approximate proximal-gradient mapping

Let us consider the approximate function f(·;β2) := φ(·) + ψ(·;β2) of φ defined
by (7.1.13). For i = 1, · · · ,M , since φi is only assumed to be convex and not
necessarily smooth, while ψ(·;β2) is quadratic, if we define:

qψi (xi; x̂, β2) :=M−1ψ(x̂;β2)+∇xiψ(x̂;β2)T(xi−x̂i)+Lψi (β2)
2 ‖xi−x̂i‖2,

(7.2.12)
ϕi(x; x̂, β2) := φi(xi) + qψi (xi; x̂, β2),

SOLUTION OF PRIMAL SUBPROBLEMS AND EXCESSIVE GAP CONDITION 127

then the mapping:

Pi(x̂, β2) := arg min
xi∈Xi

ϕi(xi; x̂, β2) = arg min
xi∈Xi

{
φi(xi)+qψi (xi; x̂, β2)

}
, (7.2.13)

is well-defined due to the strong convexity of qψi (·; x̂, β2), where Lψi (β2) :=
M‖Ai‖2

β2
is the Lipschitz constant of ∇xiψ(·;β2) defined in Lemma 7.1.3.

We also assume that, for given y and β2, we can only solve the minimization
problem (7.2.13) up to a given accuracy εi ≥ 0 to obtain an approximate
solution P̃i(·;β2) in the sense of Definition 7.2.1, i.e. P̃i(x̂, β2) ∈ Xi and:

ϕi(P̃i(x̂, β2); x̂, β2)−ϕi(Pi(x̂, β2); x̂, β2) ≤ Lψi (β2)
2 ε2

i , i = 1, · · · ,M. (7.2.14)

We denote by P := (P1, · · · ,PM) and P̃ := (P̃1, · · · , P̃M) the proximal-gradient
and approximate proximal-gradient mappings of the function ϕ := (ϕ1, · · · , ϕM).
Remark 7.2.1. In particular, if φi is differentiable and its gradient is Lipschitz
continuous with a Lipschitz constant Lφi > 0 then one can replace the proximal-
gradient mapping Pi by the following one:

Gi(x̂, β2) :=arg min
xi∈Xi

{
∇xi(φi(x̂i)+ψ(x̂;β2))T (xi−x̂i)+ L̃i(β2)

2 ‖xi−x̂i‖22
}
,

where L̃i(β2) := Lφi + Lψi (β2). Note that the minimization problem defined
Gi is a quadratic program with convex constraints. If Xi is polytopic then this
problem becomes a convex quadratic programming problem.

Similar to P̃i, we can define an approximate operator G̃i of Gi when the
minimization problem (7.2.1) is solved approximately in the sense of Definition
7.2.1.

In contrast to f(·;β2), the smoothed dual function g(·;β1) is differentiable and
its gradient is Lipschitz continuous on Rm with a Lipschitz constant Lg(β1) as
stated in Lemma 7.1.1, we can define the following mapping:

G∗(ŷ;β1) := argmax
y∈Rm

{
∇yg(ŷ;β1)T (y − ŷ)− Lg(β1)

2 ‖y − ŷ‖22

}
, (7.2.15)

where ∇yg(ŷ;β1) = Ax∗(ŷ;β1) − b. However, since x∗(ŷ;β1) can not be
computed exactly, we use its approximation x̃∗(ŷ;β1) to form the problem:

G̃∗(ŷ;β1) := argmax
y∈Rm

{
∇̃yg(ŷ;β1)T (y − ŷ)− Lg(β1)

2 ‖y − ŷ‖22

}
. (7.2.16)

128 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

This problem can explicitly be solved to get the unique solution:

G̃∗(ŷ;β1) = ŷ + Lg(β1)−1(Ax̃∗(ŷ;β1)− b). (7.2.17)

The mapping G∗(·;β1) is called gradient mapping of the function g(·;β1) (see
[142]). We also refer to G̃∗(·;β1) as an approximate gradient mapping of g(·;β1).
Remark 7.2.2. We notice that, similar to [140], we can define the gradient
mappings defined above by using the Bregman distance (7.1.2) and adapt the
algorithms developed in the next sections by using these new mappings.

7.3 Decomposition algorithm with two primal steps

In this section, we derive an iterative decomposition algorithm for solving
(SepCOP) based on the excessive gap technique. We call this method the
decomposition algorithm with two primal steps. The aim is to generate a point
(x̄k, ȳk) ∈ X × Rm at each iteration k such that this point maintains the
excessive gap condition (7.2.6) while driving the parameters βk1 and βk2 to zero.

Finding a starting point

First, we state that the excessive gap condition (7.2.6) is well-defined by showing
that there exists a point (x̄, ȳ) that satisfies (7.2.6). We assume that the Lipschitz
constant Lψi (β2) defined in Lemma 7.1.3 is chosen by Lψi (β2) = M

β2
‖Ai‖22 for all

i = 1, · · · ,M . Let

L̄ :=
[
M max

1≤i≤M

‖Ai‖22
σXi

]1/2
. (7.3.1)

We have the following lemma whose proof is postponed to Appendix A.1.
Lemma 7.3.1. Suppose that xc ∈ X is the prox-center of the convex set X
and the constant L̄ is defined by (7.3.1). For a given β2 > 0, let us define:

ȳ := β−1
2 (Axc − b) and x̄ := P(xc;β2). (7.3.2)

If the parameter β1 is chosen such that β1β2 ≥ L̄2 then (x̄, ȳ) satisfies the
excessive gap condition (7.2.6).

Alternatively, for a given β1 > 0, we define:

x̄ := x∗(0m;β1) and ȳ := Lg(β1)−1(Ax̄− b). (7.3.3)

If the parameter β2 is chosen such that β1β2 ≥ L̄2 then (x̄, ȳ) satisfies the
excessive gap condition (7.2.6).

DECOMPOSITION ALGORITHM WITH TWO PRIMAL STEPS 129

Main iteration scheme

Suppose that (x̄, ȳ) ∈ X ×Rm and satisfies the excessive gap condition (7.2.6).
We generate a new point (x̄+, ȳ+) ∈ X ×Rm by applying the following scheme:

(x̄+, ȳ+) :=S2ps(x̄, ȳ;β1, β
+
2 , τ)⇔


x̂ := (1− τ)x̄+ τx∗(ȳ;β1),
ȳ+ := (1−τ)ȳ+τy∗(x̂;β+

2),
x̄+ := P(x̂;β+

2),
(7.3.4)

and
β+

1 := (1− τ)β1 and β+
2 = (1− τ)β2, (7.3.5)

where P(·;β+
2) is defined in (7.2.13) and τ ∈ (0, 1) will be chosen appropriately.

Remark 7.3.1. In the scheme (7.3.4), the points x∗(ȳ;β1), x̂ and x̄+ can be
computed in parallel. To compute these points we need to perform two primal
steps corresponding to solving M convex programming subproblems (7.1.8) and
M convex primal subproblems (7.2.14) as indicated by the name of the algorithm.

The following theorem shows that the scheme (7.3.4)-(7.3.5) maintains the
excessive gap condition (7.2.6). The proof of this theorem is postponed to
Appendix A.1.
Theorem 7.3.2. Suppose that (x̄, ȳ) ∈ X × Rm satisfies (7.2.6) w.r.t. two
values β1 > 0 and β2 > 0. Then if the parameter τ is chosen such that τ ∈ (0, 1)
and:

β1β2 ≥
τ2

(1− τ)2 L̄
2. (7.3.6)

then the new point (x̄+, ȳ+) generated by scheme (7.3.4)-(7.3.5) is in X ×Rm

and maintains the excessive gap condition (7.2.6) w.r.t. two new values β+
1 < β1

and β+
2 < β2.

If φi is convex and differentiable such that its gradient is Lipschitz continuous
with a Lipschitz constant Lφii ≥ 0 for some i = 1, · · · ,M , then instead of using
the proximal-gradient mapping Pi(·;β2) in (7.3.4) we can use the mapping G
defined in Remark 7.2.1 as stated in the following corollary. The proof of the
corollary is moved to Appendix A.1.
Corollary 7.3.1. If the function φi is differentiable and its gradient is Lipschitz
continuous with a Lipschitz constant Lφi for some i ∈ IG ⊆ {1, · · · ,M}. Then
if the parameter is chosen such that τ ∈ (0, 1) and:{

(1−τ)
τ2 β1σXi ≥ Lφi + M‖Ai‖2

(1−τ)β2
if i ∈ IG ,

β1β2 ≥ τ2

(1−τ)2 L̄
2 otherwise,

(7.3.7)

130 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

then the point ˆ̄x+ := (ˆ̄x+
1 , . . . , ˆ̄x

+
M) computed by:

ˆ̄x+
i :=

{
Gi(x̂;β+

2) if i ∈ IG ,
Pi(x̂;β+

2) otherwise,
(7.3.8)

for i = 1, · · · ,M , instead of x̄+ in the scheme S2ps, still maintains the excessive
gap condition (7.2.6).

Note that if the feasible set Xi (i ∈ IG) is simple, e.g. polytopic, then computing
ˆ̄x+
i by (7.3.8) requires a lower computational cost than computing x̄+

i .

Step size update

In the next step we show how to update the parameter τ such that the condition
(7.3.6) holds. From the update rule (7.3.5) we have β+

1 β
+
2 = (1 − τ)2β1β2.

Suppose that β1 and β2 satisfy the condition (7.3.6), i.e. β1β2 ≥ τ2

(1−τ)2 L̄
2.

The condition β+
1 β

+
2 ≥

τ2
+

(1−τ+)2 L̄
2 is satisfied if τ2

(1−τ)2 ≥
τ2
+

(1−τ)2(1−τ+)2 . This
condition leads to τ ≥ τ+

1−τ+ . Hence, (7.3.4)-(7.3.5) are well-defined. At the first
iteration k = 0, both condition (7.3.6) and β1β2 ≥ L̄2 in Lemma 7.3.1 need to
be satisfied. This leads to 0 < τ0 ≤ 0.5.

Now, we define a rule to update the step size parameter τ .
Lemma 7.3.2. Suppose that τ0 is arbitrarily chosen in (0, 1

2]. Then the
sequence {τk}k≥0 generated by:

τk+1 := τk
τk + 1 (7.3.9)

satisfies the following formula:

τk = τ0
1 + τ0k

, ∀k ≥ 0. (7.3.10)

Moreover, the sequence {βk}k≥0 generated by βk+1 = (1 − τk)βk for a fixed
β0 > 0 satisfies:

βk = β0

τ0k + 1 , ∀k ≥ 0. (7.3.11)

Proof. Since τ−1
k+1 = τ−1

k + 1 for k ≥ 0 by (7.3.9), the update formula (7.3.10)
holds. Moreover, since βk+1 = β0

∏k
i=0(1 − τi), by substituting (7.3.10) into

the last expression, after some simple calculations we obtain (7.3.11).

DECOMPOSITION ALGORITHM WITH TWO PRIMAL STEPS 131

Remark 7.3.3. Since τ0 ∈ (0, 1
2], we see from Lemma 7.3.2 that with τ0 := 0.5

the right-hand side of (7.3.11) is minimized. In this case, the update rule of τk
is simplified to τk := 1

k+2 for k ≥ 0.

The algorithm and its worst-case complexity

Now, we combine the results of Lemma 7.3.1, Theorem 7.3.2 and Lemma 7.3.2
in order to build the following algorithm.

Algorithm 7.3.1.(Decomposition algorithm with two primal steps).
Initialization: Perform the following steps:

1. Set τ0 := 0.5. Choose β0
1 > 0 and β0

2 > 0 such that β0
1 = β0

2 := L̄.

2. Compute x̄0 and ȳ0 from (7.3.2) or (7.3.3).

Iteration: For k = 0, 1, · · · , perform the following steps:

1. If a given stopping criterion is satisfied then terminate.

2. Update the smoothness parameter βk+1
2 := (1− τk)βk2 .

3. Compute x̄k+1 in parallel and ȳk+1 by using scheme (7.3.4):

(x̄k+1, ȳk+1) := S2ps(x̄k, ȳk;βk1 , βk+1
2 , τk).

4. Update the smoothness parameter: βk+1
1 := (1− τk)βk1 .

5. Update the step size τk by: τk+1 := 1
k+3 .

End.

As mentioned in Remark 7.3.1, there are two steps in the scheme S2ps of
Algorithm 7.3.1 that can be parallelized. The first step is finding x∗(ȳk;β1) and
the second is computing x̄k+1. In general, both steps require one to solve M
convex primal subproblems in parallel. The stopping criterion of Algorithm
7.3.1 will be discussed in Section 7.8.

The next theorem proves the convergence of Algorithm 7.3.1.
Theorem 7.3.4. Let {(x̄k, ȳk)} be a sequence generated by Algorithm 7.3.1.
Then the following duality gap and feasibility gap hold:

−RY ∗
∥∥Ax̄k − b∥∥ ≤ φ(x̄k)− g(ȳk) ≤ 2L̄DX

k + 2 , (7.3.12)

132 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

and
F(x̄k) =

∥∥Ax̄k − b∥∥ ≤ 2L̄DY ∗

k + 2 , (7.3.13)

where L̄, DX , RY ∗ and DY ∗ are defined by (7.3.1), (7.1.5) and (7.2.10),
respectively.

Proof. By the choice of β0
1 = β0

2 = L̄ and Step 1 in the initialization phase of
Algorithm 7.3.1 we see that βk1 = βk2 for all k ≥ 0. Moreover, since τ0 = 0.5, by
Lemma 7.3.2, we have βk1 = βk2 = β0

τ0k+1 = L̄
0.5k+1 . By applying Lemma 7.2.1

with β1 and β2 equal to βk1 and βk2 respectively, we obtain the bounds (7.4.9)
and (7.4.10).

Remark 7.3.5. The worst-case complexity of Algorithm 7.3.1 is O(2L̄R0
ε),

where R0 := max {DX , DY ∗}. Moreover, the constants in the bounds (7.4.9)
and (7.4.10) also depend on the choice of β0

1 and β0
2 , which satisfy the condition

β0
1β

0
2 ≥ L̄ of Lemma 7.3.1. The values of β0

1 and β0
2 will affect the magnitudes of

the duality and feasibility gaps. By substituting L̄ into the worst-case complexity
formula, we obtain an alternative:

O

([
M max

1≤i≤M

{
σ−1
Xi
‖Ai‖2

}]1/2
R0ε

−1

)
.

This formula shows that the worst-case complexity of Algorithm 7.3.1 also
depends on the size of the problem. In particular, it depends on M , the number
of components of the problem.

7.4 Decomposition algorithm with two dual steps

In Algorithm 7.3.1 two primal steps w.r.t. computing x∗(ȳ;β1) and x̄+ are
required. Since computing a primal step is equivalent to solving M convex
primal subproblems in parallel, the cost per iteration may be relatively high. To
overcome this disadvantage, we show in this section that we can only perform one
primal step and two dual steps to maintain the excessive gap condition (7.2.6).
Note that computing a dual step only needs matrix-vector multiplication.

Main iteration scheme

Let us assume that (x̄, ȳ) is a given point in X ×Rm and satisfies the excessive
gap condition (7.2.6) w.r.t. β1 and β2. The aim is to compute a new point

DECOMPOSITION ALGORITHM WITH TWO DUAL STEPS 133

(x̄+, ȳ+) such that the condition (7.2.6) holds for new values β+
1 and β+

2 with
β+

1 < β1 and β+
2 < β2. This can be done by performing the following scheme:

(x̄+, ȳ+) := S2ds(x̄, ȳ, β1, β2, τ)⇐⇒


ŷ := (1− τ)ȳ+τy∗(x̄;β2)
x̄+ := (1− τ)x̄+τx∗(ŷ;β1)
ȳ+ := G∗(ŷ;β1)

(7.4.1)

β+
1 := (1− ατ)β1 and β+

2 := (1− τ)β2, (7.4.2)

where 0 < α ≤ 1 is a damping factor and τ ∈ (0, 1) is a step size which will
be appropriately updated, respectively. Note that computing ŷ and ȳ+ is just
matrix-vector multiplication, i.e.:

ŷ := (1−τ)ȳ+τβ−1
2 (Ax̄− b) and ȳ+ = ŷ+Lg(β1)−1(Ax∗(ŷ;β1)− b). (7.4.3)

The only step x̄+ requires one to solve M convex primal subproblems in parallel.

Now, in order to obtain a positive value α, we impose the following assumption.
Asumption A.7.4.9. The lower bound p∗X defined in (7.1.5) is positive.

This assumption is only technical. Since in implementation, we can add any
positive constant into pX to obtain p∗X > 0 without changing any step in the
algorithm. However, this leads to a corresponding increase of the quantity DX .
Now, we define:

α := pX(x∗(ŷ;β1))
DX

∈ [α∗, 1), where α∗ := p∗X
DX

> 0. (7.4.4)

The next theorem provides a condition such that (x̄+, ȳ+) generated by (7.4.1)
satisfies the excessive gap condition (7.2.6). The proof of this theorem can be
found in Appendix A.1.
Theorem 7.4.1. Suppose that Assumptions A.6.1.7, A.7.1.8 and A.7.4.9
are satisfied. Let (x̄, ȳ) ∈ X × Rm be a point satisfying the excessive gap
condition (7.2.6) w.r.t. two values β1 and β2. Then if α is defined by (7.4.4)
and the parameter τ is chosen such that τ ∈ (0, 1) and:

β1β2 ≥
τ2

1− τ L̄
2, (7.4.5)

where L̄ is defined by (7.3.1), then the new point (x̄+, ȳ+) generated by (7.4.1)
and (7.4.2) also satisfy the excessive gap condition (7.2.6) w.r.t two new values
β+

1 < β1 and β+
2 < β2

134 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

Step size update

Next, we show how to update the step size τ ∈ (0, 1). Indeed, from the condition
(7.4.5) of Theorem 7.4.1 we have β1β2 ≥ τ2

1−τ L̄
2. By combining this inequality

and (7.4.2) we have β+
1 β

+
2 = (1 − τ)(1 − ατ)β1β2 ≥ (1 − ατ)τ2L̄2. In order

to ensure β+
2 β

+
2 ≥

τ2
+

1−τ+ L̄
2 for the next iteration, we need (1− ατ)τ2 ≥ τ2

+
1−τ+ .

Since τ, τ+ ∈ (0, 1) and α ∈ (0, 1], we have:

0 < τ+ ≤ 0.5τ
{[

(1− ατ)2τ2 + 4(1− ατ)
]1/2 − (1− ατ)τ

}
< τ.

Hence, if we choose τ+ := 0.5τ
[
[(1− ατ)2τ2 + 4(1− ατ)]1/2 − (1− ατ)τ

]
then

we obtain the tightest rule for updating τ .

Based on the above analysis, we eventually define a sequence {τk}k≥0 as follows:

τk+1 := τk
2

{[
(1− αkτk)2τ2

k + 4(1− αkτk)
]1/2 − (1− αkτk)τk

}
, (7.4.6)

where τ0 ∈ (0, 1) is given and αk := pX(x̃∗(ŷk;βk1))/DX ∈ [α∗, 1).

Assumption A.7.4.9 implies that the factor α in (7.4.2) is positive and bounded
below away from zero. The following lemma shows an explicit formula to
calculate τk whose proof can be found in Appendix A.1.
Lemma 7.4.1. Suppose that Assumption A.7.4.9 is satisfied. Let {τk}k≥0 be
a sequence generated by (7.4.6) for a given τ0 such that 0 < τ0 < [max{1, α∗(1−
α∗)−1}]−1. Then:

(k + τ−1
0)−1 ≤ τk ≤

[
0.5(1 + α∗)k + τ−1

0
]−1

. (7.4.7)

Moreover, the sequences {βk1}k≥0 and {βk2}k≥0 generated by (7.4.2) satisfy:

γ

(τ0k + 1)2/(1+α∗) ≤ β
k+1
1 ≤ β0

1
(τ0k + 1)α∗ , βk+1

2 ≤ β0
2(1− τ0)
τ0k + 1 ,

(7.4.8)

and βk1β
k+1
2 = β0

1β
0
2

(1− τ0)
τ2
0

τ2
k ,

for some positive constant γ.
Remark 7.4.2. The estimates (7.4.7) show that the sequence {τk} converges
to zero with the convergence rate O(1

k). Consequently, by (7.4.8), we see that
the sequence {βk1βk2} also converges to zero with the convergence rate O(1

k2).
From the condition of Lemma 7.3.1 and (7.4.5), we can derive the initial value
τ0 :=

√
5−1
2 .

DECOMPOSITION ALGORITHM WITH TWO DUAL STEPS 135

The algorithm and its convergence

Finally, by combining the conclusions of Lemma 7.3.1, Theorem 7.4.1 and
Lemma 7.4.1, we present the algorithm in detail as follows.

Algorithm 7.4.1.(Decomposition algorithm with two dual steps).
Initialization: Perform the following steps:

1. Choose τ0 := 0.5(
√

5− 1) and β0
1 > 0. Set β0

2 = L̄2

β0
1
.

2. Compute x̄0 and ȳ0 from (7.3.2) or (7.3.3).

Iteration: For k = 0, 1, · · · , perform the following steps:

1. If a given stopping criterion is satisfied then terminate.

2. Compute x̄k+1 in parallel and ȳk+1 by using scheme (7.4.1):

(x̄k+1, ȳk+1) := S2ds(x̄k, ȳk;βk1 , β2, τk).

3. Compute αk := pX(x∗(ŷ;β1))
DX

.

4. Update βk+1
1 := (1− αkτk)βk1 and βk+1

2 := (1− τk)βk2 .

5. Update the step size τk as:

τk+1 := 0.5τk
{[

(1− αkτk)2τ2
k + 4(1− αkτk)

]1/2 − (1− αkτk)τk
}
.

End.

Note that the second step of S2ds at Step 3 of Algorithm 7.4.1 can be parallelized.
This step computes x∗(ȳk;β1) by solving M convex primal subproblems in
parallel. The stopping criterion of Algorithm 7.4.1 at Step 1 will be discussed
in Section 7.8.

The following theorem shows the convergence of Algorithm 7.4.1.
Theorem 7.4.3. Suppose that Assumptions A.6.1.7, A.7.1.8 and A.7.4.9
are satisfied. Let {(x̄k, ȳk)} be a sequence generated by Algorithm 7.4.1 after k
iterations. Then the following duality gap holds:

−RY ∗F(x̄k+1) ≤ φ(x̄k+1)− g(ȳk+1) ≤ β0
1DX

[0.5(
√

5− 1)k + 1]α∗
, (7.4.9)

136 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

and the feasibility gap satisfies:

F(x̄k+1) =
∥∥Ax̄k+1 − b

∥∥ ≤ Cf

0.25(
√

5− 1)(1 + α∗)k + 1
, (7.4.10)

where Cf := (3 −
√

5) L̄
2

β0
1
RY ∗ + 0.5(

√
5 − 1)L̄

√
2DX and RY ∗ is defined by

(7.2.10). Consequently, the sequence {(x̄k, ȳk)}k≥0 generated by Algorithm 7.4.1
converges to a solution (x∗, y∗) of the primal and dual problems (SepCOP)-
(7.1.1) as k →∞.

Proof. From Lemma 7.2.1, we can obtain the following estimates: F(x̄k+1) ≤
2βk+1

2 RY ∗+
√

2βk+1
1 βk+1

2 DX and φ(x̄k+1)−g(ȳk+1) ≤ βk+1
1 DX . By combining

these inequalities and (7.4.8) and then using the definition of Cf we obtain
(7.4.9) and (7.4.10).

Now, we consider a particular case, where we can get O(1/εf) of the worst-case
complexity, where εf is a desired accuracy.
Corollary 7.4.1. Suppose that the smoothness parameter βk1 in Algorithm 7.4.1
is fixed at βk1 = β0

1 = L̄εf for all k ≥ 0. Suppose further that the sequence
{τk} is updated by τk+1 := 0.5τk

(√
τ2 + 4− τ

)
starting from τ0 := 0.5(

√
5− 1).

Then after k̄ := b2/εfc+ 1 iterations, one has:

F(x̄k̄) ≤ C0
fεf and

∣∣∣φ(x̄k̄)− g(ȳk̄)
∣∣∣ ≤ C0

dεf, (7.4.11)

where C0
f := L̄(2RY ∗ +

√
2DX) and C0

d := L̄max
{

2RY ∗ +
√

2DX , DX

}
.

Proof. If we assume that βk1 is fixed in Algorithm 7.4.1 then, by the new update
rule of {τk} we have βk+1

2 β0
1 = L̄2τ2

k ≤
4L̄2τ2

0
(τ0k+2)2 due to (7.4.7) and (7.4.8) with

α∗ = 0. Since β0
1 = L̄εf , if we choose k̄ := b2/εfc + 1 then 2τ0

τ0(k̄−1)+2 ≤ εf .

Furthermore, by Lemma 7.2.1 we have F(x̄k̄) ≤ 2βk̄2RY ∗ +
√

2β0
1β

k̄
2DX ≤

L̄(2RY ∗ +
√

2DX)εf and −RY ∗F(x̄k̄) ≤ φ(x̄k̄)− g(ȳk̄) ≤ β0
1DX = L̄DXεf . By

combining these estimates, we obtain the conclusion (7.4.11).

Remark 7.4.4. From Corollary 7.4.1 we also obtain:

O

([
M max

1≤i≤M

{
σ−1
Xi
‖Ai‖2

}]1/2
R̂0ε

−1
f

)
,

where R̂0 := max
{

2RY ∗ +
√

2DX , DX

}
. This formula again shows that the

worst-case complexity of Algorithm 7.3.1 also depends on the size of the problem.
In particular, it depends on M , the number of components.

DECOMPOSITION ALGORITHMS WITH SWITCHING STEPS 137

Remark 7.4.5. The constant L̄ in Algorithm 7.4.1 can be replaced by ˆ̄L :=[∑M
i=1

‖Ai‖2
σXi

]1/2
as suggested by the condition (A.1.15) in Appendix A.

7.5 Decomposition algorithms with switching steps

In this section, we apply a switching strategy in [140] to derive two variants
of Algorithms 7.3.1 and 7.4.1. These algorithms alternately switch between
the primal step scheme S2ps and the dual step scheme S2ds depending on
the iteration counter k being either even or odd. In the first variant, we
simultaneously update the smoothness parameters β1 and β2, while, in the
second variant, these parameters are alternatively updated.

The first variant

In the first variant, we simply switch between two schemes S2ps and S2ds to
obtain a switching variant. In principle, we can either start with S2ps then
switch to S2ds and repeat in the next iterations. We notice that this variant
fills in the disadvantages of Algorithms 7.3.1 and 7.4.1 as we will see later. For
simplicity of presentation, we make the following rule.
Rule R.7.5.1. If the iteration counter k is even then we apply S2ps. Otherwise,
S2ds is used.

By combining the conclusions of Theorems 7.3.2 and 7.4.1 we can see that the
sequence

{
(x̄k, ȳk)

}
k≥0 generated either by the scheme S2ps or S2ds satisfies

the excessive condition (7.2.6).

Now, we can present the algorithm in detail as follows.

Algorithm 7.5.1.(Decomposition algorithm I with switching primal-dual steps).
Initialization: Perform as in Algorithm 7.4.1 with τ0 := 0.5.
Iteration: For k = 0, 1, · · · perform the following steps:

1. If a given stopping criterion is satisfied then terminate.

2. If k is even then perform the scheme S2ps:

2.1. Update βk+1
2 := (1− τk)βk2 .

2.2. Compute (x̄k+1, ȳk+1) := S2ps(x̄k, ȳk, βk1 , βk+1
2 , τk).

2.3. Update βk+1
1 := (1− τk)βk1 .

138 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

2.4. Update the step size τk as τk+1 := τk
τk+1 .

3. Otherwise, (i.e. k is odd) perform the scheme S2ds:

3.1. Compute (x̄k+1, ȳk+1) := S2ds(x̄k, ȳk, βk1 , βk2 , τk).
3.2. Compute the factor αk := pX(x∗(ŷk;βk1))/DX .
3.3. Update βk+1

1 := (1− αkτk)βk1 and βk+1
2 := (1− τk)βk2 .

3.4. Update the step size τk as:

τk+1 := τk
2

{[
(1− αkτk)2τ2

k + 4(1− αkτk)
]1/2 − (1− αkτk)τk

}
.

End.

As it has been shown in Algorithms 7.3.1 and 7.4.1 that the second line of
the dual scheme S2ds can be parallelized by solving M convex subproblems
simultaneously. In the primal scheme S2ps, there are two steps that can be
parallelized: the first and the third lines of S2ps. Each line requires one to solve
M convex subproblems in parallel.

Similar to the proof of Lemma 7.3.2 we can show that the sequence {τk}k≥0
generated by Step 2.4 or Step 3.4 of Algorithm 7.5.1 remains satisfying the
estimates (7.4.7). Consequently, the estimate of βk2 in (7.4.8) is still valid, while
the parameter βk1 satisfies βk+1

1 ≤ β0
1

(τ0k+1)(1+α∗)/2 .

Finally, we summarize the convergence results of Algorithm 7.5.1 in the following
theorem.
Theorem 7.5.1. Suppose that Assumptions A.6.1.7, A.7.1.8 and A.7.4.9
are satisfied. Let {(x̄k, ȳk)} be a sequence generated by Algorithm 7.5.1 after k
iterations. Then the following duality gap holds:

−RY ∗F (x̄k+1) ≤ φ(x̄k+1)− g(ȳk+1) ≤ β0
1DX

(0.5k + 1)(1+α∗)/2 , (7.5.1)

and the feasibility gap satisfies:

F(x̄k+1) =
∥∥Ax̄k+1 − b

∥∥ ≤ Cf
0.25(1 + α∗)k + 1 , (7.5.2)

where Cf := L̄2

β0
1
RY ∗+0.5L̄

√
2DX and RY ∗ is defined by (7.2.10). Consequently,

the sequence {(x̄k, ȳk)}k≥0 generated by Algorithm 7.5.1 converges to a solution
(x∗, y∗) of the primal and dual problems (SepCOP)-(7.1.1) as k →∞.

The proof of this theorem is similar to the proof of Theorem 7.4.3, we omit the
details here. We can see from the right hand side of (7.5.1) in Theorem 7.5.1

DECOMPOSITION ALGORITHMS WITH SWITCHING STEPS 139

that this term is better than the one in Theorem 7.4.3. Consequently, Algorithm
7.5.1 overcomes the difficulty of Algorithm 7.4.1 in Assumption A.7.4.9 when
α∗ is small and ensures that the sequence {βk1} decreases to zero. Nevertheless,
as a compensation, at each even iteration, the scheme S2ps is performed, it
requires additional cost to compute x̄+ at the third line of S2ps.

The second variant

In this variant, we only update one smoothness parameter β1 or β2 at each
iteration as done in [140]. By applying Rule 7.5.1 we first update β1 if the
iteration counter k is even. Otherwise, β2 is updated. As we will see in Theorem
7.5.3 bellow, this variant has a better convergence rate than the one of the first
variant.

The main iteration is now presented as follows:

(x̄+, ȳ+) :=
{
S2ps(x̄, ȳ, β1, β2, τ) and β+

1 := (1− τ)β1 if k is even,
S2ds(x̄, ȳ, β1, β2, τ) and β+

2 := (1− τ)β2 otherwise.
(7.5.3)

Note that in this scheme, only one parameter is updated at each iteration which
is different from (7.3.4).

The following lemma shows that (x̄+, ȳ+) generated by the scheme (7.5.3)
maintains the excessive gap condition (7.2.6).
Lemma 7.5.1. Suppose that (x̄, ȳ) ∈ X ×Rm and satisfies (7.2.6) w.r.t. two
values β1 and β2. Then if we choose the parameter τ ∈ (0, 1) such that:

β1β2 ≥
τ2

1− τ L̄
2, (7.5.4)

then the new point (x̄+, ȳ+) generated by the scheme (7.5.3) is in X × Rm

and maintains the excessive gap condition (7.2.6) w.r.t. either two new values
β+

1 < β1 and β2 or β1 and β+
2 < β2.

The proof of this lemma is quite similar to [140, Theorem 4.2.] that we omit
here.

Now, we show how to update the step size τ in order to maintain the excessive
gap condition (7.2.6). Similar to (7.4.6), we update τ+ such that:

0 < τ+ ≤
τ

2
(√

τ2 + 4− τ
)
< τ.

The tightest rule for updating the step size sequence {τk}k≥0 is:

τk+1 := τk
2
(√

τ2
k + 4− τk

)
, (7.5.5)

140 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

for all k ≥ 0 and τ0 ∈ (0,
√

5−1
2]. Associated with {τk}, we generate two

sequences {βk1} and {βk2} as:

βk+1
1 :=

{
(1− τk)βk1 if k is even
βk1 otherwise,

and βk+1
2 :=

{
βk2 if k is even
(1− τk)βk2 otherwise,

(7.5.6)
where β0

1 = β0
2 > 0 are fixed.

Similar to Lemma 7.3.2, we have the following lemma.
Lemma 7.5.2. Let {τk}, {βk1} and {βk2} be three sequences generated by (7.5.5)
and (7.5.6), respectively. Then:

(1− τ0)β0
1

τ0k + 1 < βk1 <
2β0

1
√

1− τ0
τ0k

, and β0
2
√

1− τ0
τ0k + 1 < βk2 <

2β0
2

τ0k
, (7.5.7)

for all k ≥ 1, provided that β0
1 = β0

2 > 0.

The proof of this lemma can be found in Appendix A.1.
Remark 7.5.2. We can see that the right-hand side η1

k(τ0) := 2β0
1
√

1−τ0
τ0k

and
η2
k(τ0) := 2β0

2
τ0k

of (7.5.7) are decreasing in (0, 1) for k ≥ 1. Therefore, we can
choose τ0 as large as possible to minimize ηk(·) in (0, 1). In this case, we choose
τ0 :=

√
5−1
2 ≈ 0.618.

Now, we can present the algorithm in detail as follows:

Algorithm 7.5.2.(Decomposition algorithm II with switching primal-dual
steps).
Initialization: Perform the following steps:

1. Choose τ0 := 0.5(
√

5− 1) and set β0
1 = β0

2 := L̄.

2. Compute x̄0 and ȳ0 as in Algorithm 7.3.1.

Iteration: For k = 0, 1, · · · , perform the following steps:

1. If a given stopping criterion is satisfied then terminate.

2. If k is even then:

2a) Compute (x̄k+1, ȳk+1) := S2ps(x̄k, ȳk;βk1 , βk2 , τk).
2b) Update the smoothness parameter βk1 as βk+1

1 := (1− τk)βk1 .

3. Otherwise, i.e. if k is odd then:

DECOMPOSITION ALGORITHMS WITH SWITCHING STEPS 141

3a) Compute (x̄k+1, ȳk+1) := S2ds(x̄k, ȳk;βk1 , βk2 , τk).
3b) Update the smoothness parameter βk2 as βk+1

2 := (1− τk)βk2 .

4. Update the step size τk as: τk+1 := τk
2
[
(τ2
k + 4)1/2 − τk

]
.

End.

The main steps of Algorithm 7.5.2 are Steps 2a and 2b, which requires us to
compute either the primal step scheme S2ps or the dual step scheme S2ds. The
following theorem shows the convergence of this algorithm.
Theorem 7.5.3. Let

{
(x̄k, ȳk)

}
k≥0 be a sequence generated by Algorithm 7.5.2.

Then the duality gap is satisfied:

−RY ∗
∥∥Ax̄k+1 − b

∥∥ ≤ φ(x̄k+1)− g(ȳk+1) ≤ 2L̄DX

k + 1 , (7.5.8)

and the feasibility gap holds:

∥∥Ax̄k+1 − b
∥∥ ≤ (

√
5 + 1)L̄DY ∗

4(k + 1) , (7.5.9)

where L̄, DX , RY ∗ and DY ∗ are defined in (7.3.1), (7.1.5) and (7.2.10).

Proof. The conclusion of this theorem follows directly from Lemmas 7.2.1 and
7.3.2, the conditions τ0 =

√
5−1
2 , β0

1 = β0
2 = L̄ and the fact that βk1 ≤ βk2 .

Remark 7.5.4. Note that the worst-case complexity of Algorithm 7.5.2 is still
O(L̄R0

ε), where R0 := max {DX , D
∗
Y }. The constants in the complexity bounds

(7.4.9) and (7.4.10) are similar to the ones in (7.5.1) and (7.5.2), respectively.
As we discuss in Section 7.8, the rate of decrease of τk in Algorithm 7.5.2 is
smaller than two times of τk in Algorithm 7.5.2. Consequently, the sequences
{βk1} and {βk2} generated by Algorithm 7.3.1 approach zero faster than the ones
generated by Algorithm 7.5.2. Hence, Algorithm 7.3.1 converges faster than
Algorithm 7.5.2. By substituting L̄ into the worst-case complexity formula, we
obtain:

O

([
M max

1≤i≤M

{
σ−1
Xi
‖Ai‖2

}]1/2
R0ε

−1

)
,

which is the same as the one in Remark 7.3.5.

Note that we can switch the role of the schemes S2ps and S2ds in Algorithm
7.5.2. We can also combine the primal and dual step schemes S2ps and S2ds in
different ways to obtain other variants. For instance, we can apply twice dual
scheme S2ds and one primal scheme S2ps and then switch them.

142 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

7.6 Application to strongly convex case

If φi in (SepCOP) is strongly convex for i = 1, · · · ,M then the convergence
rate of the dual scheme (7.4.1) can be accelerated up to O(1

k2).

Suppose that φi is strongly convex with a convexity parameter σφi > 0 for
i = 1, · · · ,M . Then the original dual function g defined by (6.3.1) is well-defined,
concave and differentiable. Moreover, its gradient is given by:

∇g(y) = Ax∗(y)− b, (7.6.1)

which is Lipschitz continuous with a Lipschitz constant Lg :=
∑M
i=1

‖Ai‖22
σφi

, see
[134, 145]. The excessive gap condition (7.2.6) in this case reduces to:

f(x̄;β2) ≤ g(ȳ), (7.6.2)

for given x̄ ∈ X, ȳ ∈ Rm and β2 > 0. From Lemma 7.2.1 we conclude that if
the point (x̄, ȳ) ∈ X ×Rm and satisfies (7.6.2) then, for a given y∗ ∈ Y ∗, the
following estimates hold:

−2β2 ‖y∗‖2 ≤ −‖y∗‖ ‖Ax̄− b‖ ≤ φ(x̄)− g(ȳ) ≤ 0, (7.6.3)

and
F(x̄) := ‖Ax̄− b‖ ≤ 2β2 ‖y∗‖ . (7.6.4)

We now adapt the scheme (7.4.1) to this special case. Suppose (x̄, ȳ) ∈ X×Rm

and satisfies (7.6.2), we generate a new pair (x̄+, ȳ+) as:

(x̄+, ȳ+) := Ss2ds(x̄, ȳ;β2, τ)⇐⇒


ŷ := (1− τ)ȳ + τy∗(x̄;β2),
x̄+ := (1− τ)x̄+ τx∗(ŷ),
ȳ+ = ŷ + (Lg)−1(Ax∗(ŷ)− b),

(7.6.5)

where y∗(x̄;β2) = 1
β2

(Ax̄− b), and x∗(y) := (x∗1(y), . . . , x∗M (y)) is the solution
of the minimization problems in (6.3.1). The parameter β2 is updated by
β+

2 := (1− τ)β2 and τ ∈ (0, 1) will appropriately be chosen.

The following lemma shows that (x̄+, ȳ+) generated by (7.6.5) satisfies (7.6.2)
whose proof can be found in [140].
Lemma 7.6.1. Suppose that the point (x̄, ȳ) ∈ X × Rm and satisfies the
excessive gap condition (7.6.2) with the value β2. Then if the parameter τ is
chosen such that τ ∈ (0, 1) and:

β2 ≥
τ2Lg

1− τ . (7.6.6)

then the new point (x̄+, ȳ+) computed by (7.6.5) is in X×Rm and also satisfies
(7.6.2) with a new parameter value β+

2 < β2.

APPLICATION TO STRONGLY CONVEX CASE 143

Now, let us derive the rule to update the parameter τ . Suppose that β2 satisfies
(7.6.6). Since β+

2 = (1− τ)β2, the condition (7.6.6) holds for β+
2 if τ2 ≥ τ2

+
1−τ+ .

Therefore, similar to Algorithm 7.5.2, we update the parameter τ by using the
rule (7.5.5).

Before presenting the algorithm, it is necessary to find a starting point (x̄0, ȳ0)
satisfying (7.6.2). Let β2 = Lg. We compute (x̄0, ȳ0) as:

x̄0 := x∗(0m) and ȳ0 := (Lg)−1(Ax̄0 − b). (7.6.7)

It follows from [140, Lemma 7.4.] that (x̄0, ȳ0) satisfies the excessive gap
condition (7.6.2).

Finally, the decomposition algorithm for solving the strongly convex program-
ming problem of the form (SepCOP) is described in detail as follows.

Algorithm 7.6.1.(Decomposition algorithm for strongly convex case).
Initialization: Perform the following steps:

1. Choose τ0 := 0.5(
√

5− 1). Set β0
2 := Lg.

2. Compute x̄0 and ȳ0 as:

x̄0 := x∗(0m) and ȳ0 := (Lg)−1(Ax̄0 − b).

Iteration: For k = 0, 1, · · · , perform the following steps:

1. If a given stopping criterion is satisfied then terminate.

2. Compute (x̄k+1, ȳk+1) := Ss2ds(x̄k, ȳk;βk2 , τk).

3. Update the smoothness parameter as: βk+1
2 := (1− τk)βk2 .

4. Update the step size τk as: τk+1 := τk
2
[
(τ2
k + 4)1/2 − τk

]
.

End.

The convergence of Algorithm 7.6.1 is stated as in Theorem 7.6.1 below.
Theorem 7.6.1. Let {(x̄k, ȳk)}k≥0 be a sequence generated by Algorithm 7.6.1.
Then the following duality and feasibility gaps are satisfied:

−4LgR2
Y ∗

(k + 2)2 ≤ φ(x̄k)− g(ȳk) ≤ 0 and
∥∥Ax̄k − b∥∥ ≤ 4LgRY ∗

(k + 2)2 , (7.6.8)

where Lg :=
∑M
i=1

‖Ai‖22
σφi

and RY ∗ is defined in (7.2.10).

144 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

Proof. From the update rule of τk, we have (1− τk+1) = τ2
k+1
τ2
k

. Moreover, since

βk+1
2 = (1 − τk)βk2 , it implies that βk+1

2 = β0
2
∏k
i=0(1 − τi) = β0

2(1−τ0)
τ2
0

τ2
k . By

using the inequalities (7.4.7) wit α∗ = 1 and β0
2 = Lg, we have βk+1

2 < 4Lg(1−τ0)
(τ0k+2)2 .

With τ0 = 0.5(
√

5 − 1), one has βk2 < 4Lg
(k+2)2 . By substituting this inequality

into (7.6.3) and (7.6.4), we obtain (7.6.8).

Theorem 7.6.1 shows that the worst-case complexity of Algorithm 7.6.1 is
O(2

√
LgRY ∗√
ε

). Moreover, at each iteration of this algorithm, only one primal
step is performed in parallel. Note that the constant Lg defined in Theorem
7.6.1 is similar to the constant ˆ̄L defined in Remark 7.4.5. We can write the
worst-case complexity of Algorithm 7.6.1 as:

O

([M∑
i=1

σ−1
φi
‖Ai‖2

]1/2
RY ∗ε

−1/2

)
,

which depends on the dimension of the problem.

7.7 Extensions to inexact case

As we mentioned earlier, solving the convex primal subproblems (7.1.8) exactly
is only conceptual. In practice, we can only solve these problems up to a certain
accuracy as in Definition 7.2.1. In this section, we only extend Algorithms 7.3.1
and 7.4.1 to the inexact case. Extensions of the remaining algorithms to the
inexact case can be done similarly.

For a given accuracy vector ε = (ε1, . . . , εM) in Definition 7.2.1. Let us first
define the following quantities:

ε[σ] :=
[∑M

i=1 σXiε
2
i

]1/2
,

Dσ :=
[
2
∑M
i=1

DXi
σXi

]1/2
,

Cd := ‖A‖22Dσ +
∥∥AT (Axc − b)

∥∥
2 ,

(7.7.1)

From (7.7.1) we see that the quantity Cd depends on the data of the problem,
i.e. matrix A, the quantities DXi , σXi for i = 1, · · · ,M and vectors b and
xc. Moreover, ε[1] = ‖ε‖2. If we choose the accuracy level εi = ε̂ ≥ 0 for all
i = 1, · · · ,M then the quantities ε[1] = Mε̂ and ε[σ] = [

∑M
i=1 σXi]1/2ε̂.

Next, if we assume that the convex primal subproblems (7.1.8) and (7.2.13) are
solved inexactly in the sense of Definition 7.2.1 to obtain approximate solutions

EXTENSIONS TO INEXACT CASE 145

x̃∗(·;β1) and P̃(·;β2), respectively then the algorithmic schemes S2ps and S2ds
can be modified as follows:

(x̄+, ȳ+) := S̃2ps(x̄, ȳ, β1, β
+
2 , τ)⇐⇒


x̂ := (1− τ)x̄+ τ x̃∗(ȳ;β1),
ȳ+ := (1− τ)ȳ + τy∗(x̂;β+

2),
x̄+ := P̃(x̂;β+

2),
(7.7.2)

and

(x̄+, ȳ+) := S̃2ds(x̄, ȳ, β1, β2, τ)⇐⇒


ŷ := (1− τ)ȳ+τy∗(x̄;β2)
x̄+ := (1− τ)x̄+τ x̃∗(ŷ;β1)
ȳ+ := G̃∗(ŷ;β1).

(7.7.3)

The smoothness parameter β1 and β2 in both schemes are updated as in S2ps
and S2ds, respectively, while the damping factor α in (7.4.2) is updated by
α := pX(x̃∗(ŷ;β1))

DX
.

We also need to find an initial point in the inexact case. This can be done by
performing one of the following schemes:

a)
{
ȳ0 := β−1

2 (Ax̄c − b),
x̄0 := P̃(xc;β2),

or b)
{
x̄0 := x̃∗(0m;β1),
ȳ0 := Lg(β1)−1(Ax̄0 − b),

(7.7.4)

where x̃∗(yc;β1) defined by (7.2.1). Similar to the conclusion of Lemma 7.3.1
the point (x̄0, ȳ0) defined by (7.7.4) satisfies the δ0 - excessive gap condition
(7.2.7) under an appropriate choice of β1, where:

δ0 :=
{

0.5β−1
2 M

∑M
i=1 ‖Ai‖

2
ε2
i if (x̄0, ȳ0) is defined by a),

β1

(
L̄−1Cdε[1] + 1

2ε
2
[σ]

)
≥ 0 if (x̄0, ȳ0) is defined by b).

(7.7.5)

Lemma 7.7.1. The point (x̄0, ȳ0) ∈ X ×Rm generated by either scheme a) or
scheme b) in (7.7.4) satisfies the δ0-excessive gap condition (7.2.7) w.r.t. β1
and β2 provided that:

β1β2 ≥ L̄2, (7.7.6)

where δ0 is defined by (7.7.5).

The proof of this lemma can be found in Appendix A.1.

Now, we consider the following functions:
η1(τ, β1, β2, ȳ, ε) := 2β1(1− τ)Dσε[σ] + 0.5

∑M
i=1 L

ψ
i ((1− τ)β2)ε2

i ,

η2(τ, β1, β2, ȳ, ε) :=
[
L̄−1β1Cd + (1−τ)τ

(
β−1

2 Cd+‖A‖ ‖ȳ‖
)]
ε[1]

+0.5τβ1ε
2
[σ].

(7.7.7)

146 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

The following theorem shows that the new point (x̄+, ȳ+) generated by the
schemes (7.7.2) and (7.7.3) still maintains the δ+-excessive gap condition (7.2.7).
Theorem 7.7.1. Suppose that Assumptions A.6.1.7, A.7.1.8 and A.7.4.9
are satisfied. Let (x̄, ȳ) ∈ X ×Rm be a point satisfying (7.2.7) w.r.t. two values
β1 > 0 and β2 > 0 and the accuracy δ ≥ 0. Then if the parameter τ is chosen
such that τ ∈ (0, 1) and:

β1β2 ≥
τ2

(1− τ)2 L̄
2 (resp. β1β2 ≥

τ2

1− τ L̄
2), (7.7.8)

then the new point (x̄+, ȳ+) generated by scheme (7.7.2)-(7.3.5) (resp. (7.7.3)-
(7.4.2)) is in X × Rm and maintains the δ+-excessive gap condition (7.2.7)
w.r.t. two new values β+

1 and β+
2 and δ+ := (1− τ)δ + η1(τ, β1, β2, ȳ, ε) (resp.

δ+ := (1− τ)δ + η2(τ, β1, β2, ȳ, ε)).

The proof of this theorem is postponed to Appendix A.1.

Now, let {ηk}k≥0 be a sequence generated by either ηk := η1(τk, βk1 , βk2 , ȳk, ε̂k)
or ηk := η2(τk, βk1 , βk2 , ȳk, ε̂k). We update the sequence of accuracies {δk}k≥0
as:

δk+1 := (1− τk)δk + ηk = δk + (ηk − τkδk), ∀k ≥ 0, (7.7.9)

where δ0 ≥ 0 is chosen a priori. We need to find a condition on ε̂k such that
{δk}k≥0 is nonincreasing. Indeed, we define:

Rk := 2(1−τk)βk1Dσ

(∑M
i=0 σi

)1/2
+0.5M [(1−τk)βk2]−1∑M

i=1 ‖Ai‖
2
,

Qk := M
[
L̄−1βk1Cd+(1−τk)τk

(
(βk2)−1Cd+‖A‖

∥∥ȳk∥∥)]
+ 0.5τkβk1

∑M
i=1 σi.

(7.7.10)

The following lemma provides a condition to update the vector of accuracies ε̂k.
Lemma 7.7.2. If the accuracy ε̂ik at the iteration k is chosen such that 0 ≤
ε̂ik ≤ ε̄k := τkδk

Rk
in the scheme (7.7.2) and 0 ≤ ε̂ik ≤ ε̄k := τkδk

Qk
in the scheme

(7.7.3) for i = 1, · · · ,M then the sequence {δk}k≥0 generated by (7.7.9) is
nonincreasing.

Proof. We only prove the first case. Since 0 ≤ ε̂ik ≤ ε̄k for all i = 1, · · · ,M ,
we have (ε[1])k ≤ Mε̄k and [(ε[σ])k]2 ≤

(∑M
i=1 σXi

)
ε̄2
k ≤

(∑M
i=1 σXi

)
ε̄k. By

substituting these inequalities into the definition (7.7.7) of η and then using
(7.7.10) and the notation ηk = η1(τk, βk1 , βk2 , ȳk, ε̂k), we have:

ηk ≤ Rkε̄k.

EXTENSIONS TO INEXACT CASE 147

On the other hand, from (7.7.9) we have δk+1 = δk + (ηk − τkδk) for all k ≥ 0.
Thus, {δk}k≥0 is nonincreasing if ηk − τkδk ≤ 0 for all k ≥ 0. If we choose ε̄k
such that Rkε̄k ≤ τkδk, i.e. ε̄k ≤ τkδk

Rk
, then ηk ≤ τkδk.

If we choose ε̄0 in Lemma 7.7.2 such that ε̄0 := ε̃
C0

, where

C0 :=
{

0.5β−1
2 M

∑M
i=1 ‖Ai‖

2 if (x̄0, ȳ0) is defined by a)
β1

(
L̄−1Cd + 0.5

∑M
i=1 σi

)
if (x̄0, ȳ0) is defined by b),

(7.7.11)

and ε̃ ≥ 0 is a given accuracy, then the condition (7.2.7) holds with δ = ε̃.

Now we present a variant of Algorithm 7.3.1 in the inexact case.

Algorithm 7.7.1.(Inexact decomposition algorithm with two primal steps).
Initialization: Perform the following steps:

1. Provide a desired accuracy ε̃ ≥ 0 for solving the primal subproblems
(7.1.8). Set τ0 := 0.5, β0

1 = β0 > 0 and set β0
2 := L̄2

β0
.

2. Compute C0 by (7.7.11). Set ε̄0 := ε̃/C0 and δ0 := ε̃.

3. Compute x̄0 and ȳ0 from (7.7.4) up to the given accuracy ε̄0.

Iteration: For k = 0, 1, · · · perform the following steps:

1. If a given stopping criterion is satisfied then terminate.

2. Compute Rk by (7.7.10). Set ε̄k := τkδk/Rk and update δk+1 := (1 −
τk)δk +Rkε̄k.

3. Update βk+1
2 := (1− τk)βk2 .

4. Compute (x̄k+1, ȳk+1) := S̃2ps(x̄k, ȳk, βk1 , βk+1
2 , τk) up to the accuracy ε̄k.

5. Update βk+1
1 := (1− τk)βk1 .

6. Update the step size τk as τk+1 := τk
τk+1 .

End.

Symmetrically, we also obtain an inexact variant of Algorithm 7.4.1 as follows:
Algorithm 7.7.2.(Inexact decomposition algorithm with two dual steps).
Initialization: Perform as in Algorithm 7.7.1 with τ0 := 0.5(

√
5− 1).

Iteration: For k = 0, 1, · · · , perform the following steps:

148 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

1. If a given stopping criterion is satisfied then terminate.

2. Compute Qk by (7.7.10). Set ε̄k := τkδk/Qk and update δk+1 := (1 −
τk)δk +Qkε̄k.

3. Compute (x̄k+1, ȳk+1) := S̃2ds(x̄k, ȳk, βk1 , βk2 , τk) up to the accuracy ε̄k.

4. Compute the factor αk := pX(x̃∗(ŷk;βk1))/DX .

5. Update βk+1
1 := (1− αkτk)βk1 and βk+1

2 := (1− τk)βk2 .

6. Update the step size τk as:

τk+1 := 0.5τk
{[

(1− αkτk)2τ2
k + 4(1− αkτk)

]1/2 − (1− αkτk)τk
}
.

End.

Finally, we summarize the convergence results of Algorithms 7.7.1 and 7.7.2 in
the following theorem. The proofs of this theorem can be done similarly as the
proof of Theorems 7.3.4 and 7.4.3, which we omit the details here.
Theorem 7.7.2. Suppose that Assumptions A.6.1.7, A.7.1.8 and A.7.4.9
are satisfied. Let {(x̄k, ȳk)} be a sequence generated by Algorithm 7.7.1 after k̄
iterations. If the accuracy ε̃ in this algorithm is chosen such that 0 ≤ ε̃ ≤ 2c0

k̄+2
for some positive constant c0 then the following duality gap holds:

−RY ∗F(x̄k̄) ≤ φ(x̄k̄)− g(ȳk̄) ≤ 2(β0DX + c0)
k̄ + 2

, (7.7.12)

and the feasibility gap satisfies:

F(x̄k̄) =
∥∥∥Ax̄k̄ − b∥∥∥ ≤ 2(L̄2β−1

0 RY ∗ + L̄
√

2DX + 2c0β−1
0)

k̄ + 2
. (7.7.13)

Alternatively, let {(x̄k, ȳk)} be a sequence generated by Algorithm 7.7.2 after
k̄ iterations. If the accuracy ε̃ in this algorithm is chosen such that 0 ≤ ε̃ ≤

c0
0.5(
√

5−1)k̄+1 for some positive constant c0 then the following duality gap holds:

−RY ∗F(x̄k̄+1) ≤ φ(x̄k̄+1)− g(ȳk̄+1) ≤ (β0DX + c0)
[0.5(
√

5− 1)k̄ + 1]α∗
, (7.7.14)

and the feasibility gap satisfies:

F(x̄k̄+1) =
∥∥∥Ax̄k̄+1 − b

∥∥∥ ≤ Cf

0.25(
√

5− 1)(1 + α∗)k̄ + 1
, (7.7.15)

COMPARISON AND IMPLEMENTATION ASPECTS 149

where Cf := (3−
√

5) L̄
2

β0
RY ∗ + 0.5L̄(

√
5− 1)(DX + c0β

−1
0)1/2.

Consequently, the sequence {(x̄k, ȳk)}k≥0 generated by either Algorithm 7.7.1 or
Algorithm 7.7.2 converges to a solution (x∗, y∗) of the primal and dual problems
(SepCOP)-(7.1.1) as k →∞ and ε̃→ 0+.

The conclusion of Theorem 7.7.2 shows that the initial accuracy level ε̃ of solving
the primal subproblems (7.1.8) needs to be chosen as O(1/k). Then we have∣∣φ(x̄k)− g(ȳk)

∣∣ = O(1/kα∗) and F(x̄k) = O(1/k) in Algorithm 7.7.2. We note
that the accuracy level of solving the primal subproblems (7.1.8) has to update
at each iteration k of Algorithms 7.7.1 and 7.7.2. The new value is computed
by ε̄k = τkδk/Qk at Step 2 which has the same order as 1/k2.

7.8 Comparison and implementation aspects

In this section, we first make a theoretical comparison of the algorithms proposed
in the previous sections. Then we discuss the stopping criterion of these
algorithms. Finally, we present some remarks on distributed implementation of
the algorithms.

Theoretical comparison

As we can see from the conclusions of Theorems 7.3.4, 7.4.3, 7.5.1 and 7.5.3
that the convergence rate of the algorithms depends on the convergence rate
of the sequences

{
βk1
}
and

{
βk2
}
. We notice that Algorithms 7.3.1 and 7.5.2

have the same convergence rate. In this subsection, we make a theoretical
comparison for these algorithms. Indeed, at each iteration, Algorithm 7.3.1
updates simultaneously βk1 and βk2 by using the same value of τk, while Algorithm
7.5.2 updates only one parameter. Therefore, to update both parameters βk1
and βk2 , Algorithm 7.5.2 needs two iterations. We analyze the update rule of
τk in Algorithms 7.3.1 and 7.5.2 to compare the rate of convergence of both
algorithms.

Let us define

ξ1(τ) := τ

τ + 1 and ξ2(τ) := τ

2

[√
τ2 + 4− τ

]
.

The function ξ2 can be rewritten as ξ2(τ) = τ√
(τ/2)2+1+τ/2

. Therefore, we can
easily show that:

ξ1(τ) < ξ2(τ) < 2ξ1(τ).

150 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

If we denote by {τA1
k }k≥0 and {τA2

k }k≥0 the two sequences generated by
Algorithms 7.3.1 and 7.5.2, respectively then we have τA1

k < τA2
k < 2τA1

k

for all k provided that 2τA1
0 ≥ τA2

0 . Since Algorithm 7.3.1 updates βk1 and βk2
simultaneously while Algorithm 7.5.2 updates each of them at each iteration.
If we choose τA1

0 = 0.5 and τA2
0 = 0.5(

√
5 − 1) in Algorithms 7.3.1 and 7.5.2,

respectively, then, by directly computing the values of τA1
k and τA2

k , we can see
that 2τA1

k > τA2
k for all k ≥ 1. Consequently, the sequences {βk1} and {βk2} in

Algorithm 7.3.1 converge to zero faster than in Algorithm 7.5.2. In other words,
Algorithm 7.3.1 is faster than Algorithm 7.5.2.

Now, we compare Algorithms 7.3.1-7.5.2 and Algorithm 3.2. in [134] (see also
[203]). Note that the smoothness parameter β1 is fixed in Algorithm 3.2 of
[134]. Moreover, this parameter is proportional to the given desired accuracy ε,
i.e. β1 := ε

DX
, which is often very small. Thus, the Lipschitz constant Ld(β1)

is very large. Consequently, [134, Algorithm 3.2] makes slow progress at the
very early iterations. In Algorithms 7.3.1-7.5.2, the parameters β1 and β2 are
dynamically updated starting from given values. Besides, the cost per iteration
of [134, Algorithm 3.2] is higher than Algorithms 7.3.1-7.5.2 since it requires
one to perform two primal steps and two dual steps at each iteration.

Stopping criterion

In practice, we do not often encounter a problem which reaches the worst-case
complexity bound. Therefore, it is necessary to provide a stopping criterion for
the implementation of Algorithms 7.3.1-7.7.2 to terminate earlier than using
the worst-case bound. In principle, we can use the KKT condition to terminate
the algorithms. However, evaluating the global KKT tolerance in a distributed
manner is impractical.

In the following implementation, we used the smoothed dual function g(·;β1)
to measure the stopping criterion. It is clear that if β1 is small then g(·;β1) is
an approximation of the dual function g due to Lemma 7.1.1. Therefore, we
can approximate the duality gap φ(x) − g(y) by φ(x) − g(y;β1) and use this
quantity in the stopping criterion. More precisely, we terminate the algorithms
if:

F(x̄k) :=
∥∥Ax̄k − b∥∥ /max{

∥∥Ax̄0 − b
∥∥ , 1.0} ≤ εfeas, (7.8.1)

and either the approximate duality gap satisfies:∣∣φ(x̄k)− g(ȳk;βk1)
∣∣ ≤ εfun max

{
1.0,

∣∣g(ȳk;βk1)
∣∣ , ∣∣φ(x̄k)

∣∣} , (7.8.2)

COMPARISON AND IMPLEMENTATION ASPECTS 151

or the value φ(x̄k) does not significantly change in jmax successive iterations,
i.e.: ∣∣φ(x̄k)− φ(x̄k−j)

∣∣ /max{1.0,
∣∣φ(x̄k)

∣∣} ≤ εobj for j = 1, . . . , jmax, (7.8.3)

where εfeas, εfun and εobj are given tolerances.

According to Lemmas 7.1.1 and 7.1.3, the condition (7.8.2) can be used to ensure
the decrease of the duality gap φ(x̄k)− g(ȳk) as βk1 and βk2 are sufficiently small.
The condition (7.8.3) is heuristic and may not guarantee the approximate
optimality of (x̄k, ȳk).

Remarks on distributed implementation

We show that Algorithms 7.3.1-7.6.1 proposed in this chapter can be
implemented in a distributed manner. First, we note that, in a distributed
setting, each component of problem (SepCOP) is formed from a subsystem of
the overall distributed system. Each subsystem is connected to its neighbours
via communication links. It only communicates to its neighbours and can
exchange data with them. This operation is characterized in the coupling
matrix A of (SepCOP). We can see from the above algorithms that the primal
step corresponding to solving either M primal subproblems (7.1.8) or M convex
problems (7.2.13) can be performed in parallel, while the dual step (7.4.3) can
be implemented distributively based on the structure of matrix A.

Next, we discuss the computation of the following global parameters of the
algorithms:

• The parameters τk, βk1 and βk2 do not depend on the data of the problems.
They can be parallelized by using the same formula and starting from the
same value in all subsystems.

• The constant L̄ is evaluated once at the initial phase and then it is sent
to all subsystems.

• The Lipschitz constant Lψi (β2) can be chosen as Lψi (β2) := M‖Ai‖2
β2

which
can be computed in parallel.

• We can use the lower bound α∗ instead of the factor αk in Algorithms
7.4.1 and 7.5.1. This constant is given a priori.

Finally, we note that, for each i ∈ {1, . . . ,M}, the cost of solving the primal
subproblem i depends on the complexity of the objective function φi and

152 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

the local constraint set Xi. We need to analyze the complexity of solving
this problem in order to trade-off the computational time in the nodes of the
distributed computing system as mentioned in Section 6.4 of Chapter 6.

7.9 Numerical tests

In this section, we test the algorithms presented in the previous sections for
solving four numerical examples. The first example is a nonsmooth separable
convex optimization problem which appears in resource allocation [108]. The
second and the third ones are academic examples for separable quadratic
programming and nonlinear convex programming, respectively. The last example
is an application to DSL dynamic spectrum management [202, 203].

Implementation details

The algorithms developed in the previous sections have been implemented in
C++ running on a 16 cores Intel ®Xeon 2.7GHz workstation with 12 GB of
RAM. The algorithms were parallelized by using OpenMP. In order to solve
general convex primal subproblems in these algorithms, we have used two
different solvers:

• Cplex – a commercial software for (integer) linear/quadratic programing
with academic license free [103];

• IpOpt – an open source software package based on interior point methods
for nonlinear optimization [210];

The accuracy level of these solvers is fixed at 10−8. Moreover, we warm-started
the Cplex and IpOpt solvers at the iteration k at the point given by the
previous iteration k − 1 for k ≥ 1. We compared our algorithms with the
following algorithms in certain numerical examples:

• The proximal center based decomposition algorithm proposed in [134],
which we abbreviated by PCBDM.

• An exact variant of the proximal based decomposition algorithm (EPBDM)
proposed in [39].

• A parallel variant of the alternating direction method of multipliers
considered in [122] which we named ADMM. In this algorithm, we used

NUMERICAL TESTS 153

three different strategies to update the penalty parameter. In the first
strategy, we fixed the penalty parameter at 103, while in the second and the
third versions, we updated the penalty parameter ρk by using a strategy
proposed in [95] which started from ρ0 = 1 and ρ0 = 103, respectively. We
denoted these variants by ADMM-v3, ADMM-v1 and ADMM-v2, respectively.

We chose the quadratic prox-function pXi(xi) := 1
2 ‖xi − x

c
i‖

2 + ri in the first
four algorithms, i.e. Algorithms 7.3.1-7.5.2, where xci ∈ Rni and ri = 0.75DXi

are given, for i = 1, · · · ,M .

The parameter β1 in the primal subproblems of PCBDM was fixed at β1 :=
εfun max{1.0,|φ(x̄0)|}

DX
. For EPBDM, we used an exact variant of [39, Algorithm

1], where we chose the proximity parameter as follows. First, we chose εc :=
0.5 min

{
1
3 ,

1
2‖A‖+1

}
and then set β1 :=

[
min

{
1−εc

2 , 1−εc
2‖A‖

}]−1
and β̄1 := ε−1

c .
Finally, we selected β1 = 0.5(β1 + β̄1).

We terminated Algorithms 7.3.1-7.5.2 by using the conditions in Section 7.8,
where εfeas = εfun = εobj = 10−3 and jmax = 5. We terminated all the remaining
algorithms if both conditions (7.8.1) and (7.8.3) were satisfied. The maximum
number of iterations maxiter was set to 5000 in all algorithms. We declared
that a problem could not be solved if Cplex or IpOpt failed or the maximum
number of iterations maxiter is reached. We named Algorithms 7.3.1-7.5.2 by
A.7.3.1-A.7.5.2, respectively, for short.

Nonsmooth separable convex optimization

Let us consider the following simple nonsmooth convex optimization problem:{
min
x∈Rn

φ(x) :=
∑n
i=1 i |xi − xai | ,

s.t.
∑n
i=1 xi = b, xi ∈ Xi, i = 1, . . . , n,

(7.9.1)

where b, xai ∈ R are given (i = 1, . . . , n). Let us assume that xi ∈ Xi :=
[li, ui] a given interval in R. Then, this problem can be formulated in the
form of (SepCOP) with M = n. Since the Lagrange function L(x, y) =∑n
i=1 [i |xi − xai |+ y(xi − b/n)] is nonsmooth, where y ∈ R is a Lagrange

multiplier, we choose pXi(xi) := 1
2 ‖xi − x

c
i‖

2 + 0.75DXi such that the primal
subproblem (7.1.6) can be written as:

gi(y;β1) := min
xi∈[li,ui]

{
i |xi−xai |+y

(
xi−

b

n

)
+ β1

2 |xi−x
c
i |

2+0.75DXi

}
, (7.9.2)

where β1 > 0. Now, we assume that we can choose the interval [li, ui] sufficiently
large such that the constraint xi ∈ [li, ui] is inactive. Then the solution of

154 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

problem (7.9.2) can be computed explicitly as: x∗i (y;β1) := Vi(xai , xci , y, β1, i),
where the shrinkage operator Vi is defined as follows:

Vi(xai , xci , y, β1, γ) :=


xci−β

−1
1 (γ+y) if xci−β−1

1 (γ+y) > xai ,

xci + β−1
1 (γ − y) if xci + β−1

1 (γ − y) < xai ,

xai if y+β1(xai −xci)∈ [−γ, γ].
(7.9.3)

In this example, we tested five algorithms: Algorithm 7.3.1, Algorithm 7.4.1,
Algorithm 7.5.1, Algorithm 7.5.2 and PCBDM for 10 problems with the size
varying from n = 5 to n = 100, 000. Note that if we reformulate (7.9.1) as
a linear programming problem (LP) by introducing slack variables then the
resulting LP problem has 2n variables and 2n+ 1 inequality constraints.

The data of these tests were created as follows. The value c was set to b = 2n,
xa := (xa1 , . . . , xan)T , where xia := i− n/2. The maximum number of iterations
maxiter was increased to 10, 000 instead of 5, 000. The performance of the five
algorithms is reported in Table 7.1. Here, iters is the number of iterations

Table 7.1: Performance comparison of five algorithms for solving (7.9.1)
Algorithm performance and results

Size [n] 5 10 50 100 500 1,000 5,000 10,000 50,000 100,000
A.7.3.1 226 184 704 843 1211 1277 1371 1387 1408 1409
A.7.4.1 1216 925 377 552 1092 1209 1385 1422 1374 1352

itersA.7.5.1 452 334 544 794 1142 1228 1415 1433 1358 1368
A.7.5.2 612 458 830 887 1253 1341 1451 1428 1487 1446
PCBDM 62 123 507 1036 3767 3693 6119 5816 3099 3285
A.7.3.1 0.0143 0.0105 0.0339 0.0495 0.0809 0.1078 0.2969 0.5943 2.5055 4.9713
A.7.4.1 0.0592 0.0418 0.0170 0.02660.0596 0.0827 0.2477 0.4544 2.1970 4.3869

time A.7.5.1 0.0244 0.0166 0.0222 0.0406 0.0737 0.0909 0.3522 0.4646 2.0875 4.2659
A.7.5.2 0.0316 0.0199 0.0351 0.0450 0.0716 0.0979 0.3013 0.4416 2.2879 4.3119
PCBDM 0.00270.0036 0.0218 12.1021 0.2116 0.2232 1.1448 1.3084 3.0277 6.3322

and time is the CPU time in seconds.

As we can see from Table 7.1, Algorithm 7.4.1 is the best in terms of number of
iterations and computational time. Algorithm 7.5.1 works better than Algorithm
7.5.2. The first four algorithms have consistently outperformed PCBDM in terms
of number of iterations as well as computational time in this example.

Separable convex quadratic programming

We consider the following separable convex quadratic programming problem:
min
x∈Rn

φ(x) :=
∑M
i=1

1
2x

T
i Qixi + qTi xi,

s.t.
∑M
i=1Aixi = b,

xi ≥ 0, i = 0, · · · ,M.

(7.9.4)

NUMERICAL TESTS 155

Here Qi ∈ Rni×ni is a symmetric positive semidefinite matrix, qi ∈ Rni , Ai ∈
Rm×nx for i = 1, . . . ,M and b ∈ Rm. In this example, we compared the
above algorithms by building their performance profiles in terms of number of
iterations and the total of computational time, see Section 6.5 of Chapter 6.

Problem generation. The input data of the tested collection was generated
as follows:

• Matrix Qi := RiR
T
i , where Ri is an ni × ri random matrix in [lQ, uQ]

with ri := bni/2c.

• Matrix Ai was generated randomly in [lA, uA].

• Vector qi := −Qix0
i , where x0

i is a given feasible point in (0, rx0) and
vector b :=

∑M
i=1Aix

0
i .

• The density of both matrices Ai and Ri is γA.

Note that the problems generated as above are always feasible. Moreover, they
are not strongly convex. The tested collection consisted of np = 50 problems
with different sizes and the sizes were generated randomly as follows:

• Class 1: 20 problems with 20 < M < 100, 50 < m < 500, 5 < ni < 100
and γA = 0.5.

• Class 2: 20 problems with 100 < M < 1000, 100 < m < 600, 10 < ni < 50
and γA = 0.1.

• Class 3: 10 problems with 1000 < M < 2000, 500 < m < 1000, 100 <
ni < 200 and γA = 0.05.

Scenarios. We considered two different scenarios:
Scenario I: In this scenario, we aimed at comparing Algorithms 7.3.1-7.5.2,
ADMM-v1 and EPBDM, where we generated the values of Q relatively small. More
precisely, we chose [lQ, uQ] = [−0.1, 0.1], [lA, uA] = [−1, 1] and rx0 = 2.

Scenario II: The second scenario aimed at testing the affect of matrix A and
the update rule of the penalty parameter to the performance of ADMM. We chose
[lQ, uQ] = [−1, 1], [lA, uA] = [−5, 5] and rx0 = 5.

Results. In the first scenario, the size of the problems satisfied 23 ≤M ≤ 1992,
95 ≤ m ≤ 991 and 1111 ≤ n ≤ 297818. The performance profiles of the six
algorithms are plotted in Figure 7.1 with respect to the number of iterations
and computational time.

156 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

From these performance profiles, we can observe that Algorithms 7.3.1-7.5.2
converged for all problems. ADMM-v1 was successful in solving 36/50 (72.00%)
problems while EPBDM could only solve 9/50 (18.00%) problems. It shows that
Algorithm 7.4.1 is the best in terms of number of iterations. It could solve up
to 38/50 (76.00%) problems with the best performance. ADMM-v1 solved 10/50
(20.00%) problems with the best performance, while this ratio was only 2/50
(4.00%) and 1/50 (2.00%) in Algorithm 7.5.2 and Algorithm 7.5.1, respectively.
If we compare the computational time then Algorithm 7.4.1 is the best. It
could solve up to 43/50 (86.00%) problems with the best performance. ADMM-v1
solved 7/50 (14.00%) problems with the best performance.

Since the performance of Algorithms 7.3.1-7.5.2 and ADMM are relatively
comparable, we tested Algorithms 7.3.1-7.5.2, ADMM-v1, ADMM-v2 and ADMM-v3
on a collection of np = 50 problems in the second scenario. The performance
profiles of these algorithms are shown in Figure 7.2.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total number of iterations

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total computational time

A.7.3.1

A.7.4.1

A.7.5.1

A.7.5.2

ADMM−v1

EPBDM

A.7.3.1

A.7.4.1

A.7.5.1

A.7.5.2

ADMM−v1

EPBDM

Figure 7.1: Performance profiles in log2 scale for Scenario I by using IpOpt:
Left-Number of iterations, Right-Computational time.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total number of iterations

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total computational time

A.7.3.1

A.7.4.1

A.7.5.1

A.7.5.2

ADMM−v1

ADMM−v2

ADMM−v3

A.7.3.1

A.7.4.1

A.7.5.1

A.7.5.2

ADMM−v1

ADMM−v2

ADMM−v3

Figure 7.2: Performance profiles in log2 scale for Scenario II by using Cplex
with Simplex method: Left-Number of iterations, Right-Computational time.

NUMERICAL TESTS 157

From these performance profiles we can observe the following. First, the six first
algorithms were successful in solving all problems, while ADMM-v3 could only
solve 16/50 (32%) problems. Second, Algorithm 7.4.1 and ADMM-v1 is the best
in terms of number of iterations. It both solved 18/50 (36%) problems with
the best performance. This ratio is 17/50 (34%) in ADMM-v2. Third, Algorithm
7.4.1 is the best in terms of computational time. It could solve 48/50 (96%)
the problems with the best performance, while this number is 2/50 (4%) in
ADMM-v2.

Nonlinear smooth separable convex programming

We consider the following nonlinear, smooth and separable convex programming
problem:

min
xi∈Rni

{
φ(x) :=

M∑
i=1

1
2(xi − x0

i)Qi(xi − x0
i)− wi ln(1 + bTi xi)

}
,

s.t.
M∑
i=1

Aixi = b, xi � 0, i = 1, · · · ,M.

(7.9.5)

Here, Qi is a positive semidefinite and x0
i is given vector, i = 1, · · · ,M .

Problem generation. In this example, we generated a collection of np = 50
test problems based on the following steps:

• Matrix Qi is diagonal and was generated randomly in [lQ, uQ].

• Matrix Ai was generated randomly in [lA, uA] with the density γA.

• Vectors bi and wi were generated randomly in [lb, ub] and [0, 1], respectively,
such that wi ≥ 0 and

∑M
i=1 wi = 1.

• Vector b :=
∑M
i=1Aix

0
i for a given x0

i in [0, rx0].

The size of the problems was generated randomly based on the following rules:

• Class 1: 10 problems with 20 < M < 50, 50 < m < 100, 10 < ni < 50
and γA = 1.0.

• Class 2: 10 problems with 50 < M < 250, 100 < m < 200, 20 < ni < 50
and γA = 0.5.

• Class 3: 10 problems with 250 < M < 1000, 100 < m < 500, 50 < ni <
100 and γA = 0.1.

158 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

• Class 4: 10 problems with 1000 < M < 5000, 500 < m < 1000, 50 < ni <
100 and γA = 0.05.

• Class 5: 10 problems with 5000 < M < 10000, 500 < m < 1000,
50 < ni < 100 and γA = 0.01.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ

−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total number of iterations

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total computational time

A.7.3.1

A.7.4.1

A.7.5.1

A.7.5.2

ADMM−v1

PCBDM

EPBDM

A.7.3.1

A.7.4.1

A.7.5.1

A.7.5.2

ADMM−v1

PCBDM

EPBDM

Figure 7.3: Performance profiles on Scenario II in log2 scale by using IpOpt:
Left-Number of iterations, Right-Computational time.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ

−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total number of iterations

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ

−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total computational time

A.7.3.1

A.7.4.1

A.7.5.1

A.7.5.2

ADMM−v1

ADMM−v2

A.7.3.1

A.7.4.1

A.7.5.1

A.7.5.2

ADMM−v1

ADMM−v2

Figure 7.4: Performance profiles in log2 scale for Scenario I by using IpOpt:
Left-Number of iterations, Right-Computational time.

Scenarios. We also considered two different scenarios as in the previous
example:
Scenario I: Similar to the previous example, with this scenario, we aimed at
comparing Algorithms 7.3.1-7.5.2, ADMM-v1, PCBDM and EPBDM. In this scenario,
we chose: [lQ, uQ] ≡ [−0.01, 0.01], [lb, ub] ≡ [0, 100], [lA, uA] ≡ [−1, 1] and
rx0 = 1.
Scenario II: In this scenario, we only tested first two variants of ADMM and
compared them with the first four algorithms. Here, we chose [lQ, uQ] ≡ [0.0, 0.0]
(i.e. without quadratic term), [lb, ub] ≡ [0, 100], [lA, uA] ≡ [−1, 1] and rx0 = 10.

NUMERICAL TESTS 159

Results. For Scenario I, we see that the size of the problems is in 20 ≤M ≤
9938, 50 ≤ m ≤ 999 and 695 ≤ n ≤ 741646. The performance profiles of the
algorithms are plotted in Figure 7.3. The results on this collection show that
Algorithm 7.4.1 is the best in terms of number of iterations. It could solve up to
41/50 (82%) problems with the best performance, while ADMM-v1 solved 10/50
(20%) problems with the best performance. Algorithm 7.4.1 is also the best in
terms of computational time. It could solve 50/50 (100%) problems with the
best performance. PCBDM was very slow compared to the rest in this scenario.

For Scenario II, the size of the problems was varying in 20 ≤ M ≤ 9200,
50 ≤ m ≤ 946 and 695 ≤ n ≤ 684468. The performance profiles of the tested
algorithms are plotted in Figure 7.4. We can see from these performance profiles
that Algorithm 7.4.1 is the best in terms of number of iterations. It could solve
up to 30/50 (60%) problems with the best performance, while this number
were 3/50 (6%) and 20/50 (40%) problems in Algorithm 7.3.1 and ADMM-v1,
respectively. Algorithm 7.4.1 was also the best in terms of computational time.
It solved all problems with the best performance. ADMM-v2 was slow compared
to the rest in this scenario.

DSL dynamic spectrum management optimization

Finally, we applied Algorithm 7.6.1 to solve a separable convex programming
problem arising in DSL dynamic spectrum management. This problem is
a convex relaxation of the original DSL dynamic spectrum management
formulation considered in [202]. The objective function of this problem is
given by:

φ(x) :=
M∑
i=1

φi(xi), where φi(xi) := aTi xi−
ni∑
j=1

cji ln
(ni∑
l=1

pjli x
l
i + qli

)
. (7.9.6)

Here, ai ∈ Rni , ci, qi ∈ Rni+ and Pi := (pjki) ∈ Rni×ni+ , (i = 1, · · · ,M). As
described in [203] the variable xi refers to as a transmit power spectral density,
ni = N for all i = 1, · · · ,M is the number of users, M is the number of
frequency tones which is usually large and φi is a convex approximation of a
desired BER function1, the coding gain and noise margin. A detailed model
and parameter descriptions of this problem can be found in [202, 203].

Since the function φ is convex (but not strongly convex), we added a
regularization term β1

2 ‖x− x
c‖2 to the objective of the original problem, where

β1 > 0 is relatively small and xc is the prox-center of X. The objective function

1Bit Error Rate function

160 DUAL DECOMPOSITION ALGORITHMS VIA THE EXCESSIVE GAP TECHNIQUE

φ̃(x) := φ(x) + β1
2 ‖x− x

c‖2 of the resulting problem is strongly convex with
a convexity parameter β1. Moreover, we have

∣∣φ̃(x)− φ(x)
∣∣ ≤ β1DX for all

x ∈ X, where DX is defined by (7.1.5). Therefore, if we apply Algorithm
7.6.1 to find a vector x̄k as an ε approximate solution of the resulting problem
then x̄k is also an ε+ β1DX approximate solution of the original problem. In
our problem, DX is proportional to 10−6 and the magnitudes of the objective
function are proportional to 103. In order to get the relative accuracy O(10−3)
we chose β1 between [105, 106]. The resulting problem is indeed in the form of
(SepCOP) with a strongly convex objective function.

We tested Algorithm 7.6.1 for solving the above resulting problem with different
9 scenarios and compared the results with ADMM-v3, PCBDM and EPBDM. The
parameters of the problems were selected as in [202, 203]. In this example, we
observed that ADMM-v3 was the most suitable of the three ADMM variants. We
also note that the problem possesses coupling inequality constraints. In ADMM
we added a slack variable xM+1 to transform it into a problem with equality
coupling constraints.

The numerical results of the four algorithms are reported in Table 7.2 for the 9
different scenarios.

Table 7.2: The performance information and results of Example 7.2.3.

Algorithm scen size n_vars iter cpu_time[s]obj_value rel_fgap
Algorithm 7.6.1 P13 [477, 12] 5724 36 0.294 3565.508 6.150× 10−4

ADMM-v3 284 1.968 3560.602 9.430× 10−4

PCBDM 309 1.957 3567.030 9.540× 10−4

EPBDM 326 2.084 3566.794 9.610× 10−4

Algorithm 7.6.1 P23 [477, 12] 5724 31 0.216 3787.826 9.600× 10−4

ADMM-v3 239 1.608 3784.410 8.650× 10−4

PCBDM 335 2.186 3787.604 9.620× 10−4

EPBDM 409 2.705 3787.303 9.680× 10−4

Algorithm 7.6.1 P33 [477, 12] 5724 35 0.253 3340.921 7.520× 10−4

ADMM-v3 299 1.968 3329.525 7.760× 10−4

PCBDM 337 2.211 3341.863 9.640× 10−4

EPBDM 370 2.734 3341.517 9.640× 10−4

Algorithm 7.6.1 P43 [477, 12] 5724 30 0.248 3884.034 7.120× 10−4

ADMM-v3 173 1.243 3883.697 9.840× 10−4

PCBDM 276 1.896 3884.884 9.740× 10−4

EPBDM 347 2.226 3884.103 9.670× 10−4

Algorithm 7.6.1 P53 [1147, 6] 6882 179 1.559 3397.298 9.420× 10−4

ADMM-v3 806 6.769 3353.029 6.530× 10−4

PCBDM 3103 24.479 3399.864 9.960× 10−4

EPBDM 1242 11.893 3399.040 9.960× 10−4

Algorithm 7.6.1 P63 [224, 7] 1568 33 0.089 873.976 0.160× 10−4

ADMM-v3 47 0.098 875.427 5.060× 10−4

PCBDM 186 0.363 876.572 8.990× 10−4

EPBDM 166 0.324 876.631 9.190× 10−4

Algorithm 7.6.1 P73 [224, 7] 1568 20 0.044 1039.686 5.110× 10−4

ADMM-v3 122 0.241 1037.106 4.840× 10−4

CONCLUSION 161

PCBDM 135 0.267 1040.370 8.800× 10−4

EPBDM 106 0.241 1040.364 8.790× 10−4

Algorithm 7.6.1 P83 [224, 2] 448 25 0.025 445.135 5.140× 10−4

ADMM-v3 131 0.113 446.438 8.040× 10−4

PCBDM 420 0.350 447.245 9.740× 10−4

EPBDM 438 0.352 447.227 9.720× 10−4

Algorithm 7.6.1 P93 [1147, 12] 13764 20 0.481 1565.422 0.150× 10−4

ADMM-v3 1377 25.120 1566.989 9.750× 10−4

PCBDM 529 8.847 1567.579 9.840× 10−4

EPBDM 114 2.047 1567.543 9.840× 10−4

Here, scen indicates the scenarios; size and n_vars are the size of the problem
(number of tones and number of users) and the number of variables, respectively;
iter and cpu_time are the number of iterations and the CPU time in seconds,
respectively; obj_value and rel_fgap are the objective value and relative
feasibility gaps, respectively. As we can see from Table 7.2, Algorithm 7.6.1 shows
the best performance both in terms of number of iterations and computational
time in all the scenarios of this example.

7.10 Conclusion

In this chapter we have developed two new decomposition algorithms for solving
separable convex optimization problems based on three techniques, namely
dual decomposition, excessive gap and smoothing via prox-functions. We have
analyzed the convergence of these algorithms and established their convergence
rate. Both algorithms have been modified to obtain different variants including
methods for the strongly convex case and the inexact case. The algorithms have
been verified through several numerical examples and also compared with many
other methods in the literature. The convergence rate of the proposed algorithms
is O(1/k), where k is the iteration counter, and thus they can be classified
as the optimal first-order methods in the framework of dual decomposition
(in the sense of Nesterov [142]). One main advantage of these algorithms is
that they can update automatically the algorithmic parameters without any
tuning strategy. Moreover, they can be implemented in a parallel or distributed
manner.

Chapter 8

Path-following gradient
decomposition algorithms

In the previous chapter, we have studied a class of first order methods by making
use of a smoothing technique via prox-functions. However, prox-functions
depend on the geometry of the feasible set of the problem. Besides, the primal
subproblems in the proposed algorithms are still general convex programs.
In this chapter, we study a smoothing technique via self-concordant barrier
functions [131, 133, 138, 171, 218] and propose gradient-type decomposition
algorithms for solving separable convex optimization problems. This approach
has two advantages. First, the worst-case complexity bound only depends on
the parameter of the barrier functions rather than the geometry of the feasible
set. Second, the primal subproblems can be solved via a system of generalized
equations instead of general convex programs as in the previous chapter.

Contribution of Chapter 8. The contribution of this chapter is as follows:

a) By applying smoothing techniques via self-concordant barrier functions to
the primal problem, we prove some new estimates between the original dual
function and the smoothed dual function. We also show other properties
of the smoothed dual function which will be used to design the algorithms.

b) We propose a new path-following gradient-based decomposition algorithm,
Algorithm 8.2.1, for solving the dual problem and prove its convergence.
We also estimate the local convergence rate of this algorithm.

163

164 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

c) Then we adapt Algorithm 8.2.1 by using the framework of fast gradient
methods to obtain a new variant, Algorithm 8.3.1, which possesses a
better worst-case complexity bound, which is O(2ĉAr2

0
ε), where ε is a given

accuracy, ĉA is a constant related to a local norm of matrix A and r0 is
the distance from the initial point to a solution. Both algorithms can be
implemented in a parallel manner.

Let us emphasize the following points that relate to the contribution of this
chapter. First, the estimates between the original dual function and the
smoothed dual function have not been studied yet in [131, 133, 138, 171, 218].
Second, our methods also work with nonsmooth convex optimization problems
and general local convex constraints which are not necessarily endowed with a
self-concordant barrier, see Section 8.4 and Remark 8.1.1. Third, the worst-case
complexity in most cases depends polynomially (of maximum order 2) on the
dimension of the problems and, particularly, on the number of components, see
e.g. Remark 8.2.3. Finally, we can solve the primal subproblem by transforming
it into a generalized equation. The last problem can be solved, e.g. by means
of Newton-type methods [29].

Outline of Chapter 8. This chapter consists of the following sections. In
the next section, we present a smoothing technique via self-concordant barrier
functions and provide a local estimate and global estimates between the original
dual function and the smoothed dual function. Section 8.2 presents a path-
following gradient-based algorithm for solving the smoothed dual problem.
The convergence of this algorithm is investigated and the local convergence
rate is estimated. Sections 8.3 deals with a fast gradient scheme of the dual
decomposition and proves its worst-case complexity bound. Section 8.4 presents
numerical examples. We end this chapter with some conclusion.

8.1 Smoothing via self-concordant barrier functions

For our presentation convenience, we prefer to consider in this section the
maximization problem (SepCOPmax) instead of the minimization problem
(SepCOP). Let us recall this problem here for further reference:

φ∗ :=


max
x∈Rn

φ(x) :=
∑M
i=1 φi(xi)

s.t.
∑M
i=1(Aixi − bi) = 0,

xi ∈ Xi, i = 1, · · · ,M.

(SepCOPmax)

SMOOTHING VIA SELF-CONCORDANT BARRIER FUNCTIONS 165

Here, φi, Ai, bi andXi are defined as before for i = 1, · · · ,M . The corresponding
dual problem is defined as:

g∗ := min
y∈Rm

g(y), (8.1.1)

where the dual function g is defined by:

g(y) := max
x∈Rn

{ M∑
i=1

[φi(xi) + (Aixi − bi)T y] | xi ∈ Xi, i = 1, · · · ,M
}
. (8.1.2)

Self-concordant functions and self-concordant barriers

In this subsection, we recall some definitions and properties of self-concordant
functions and self-concordant barriers along the lines of [142, 146].

Let us consider a closed convex function f ∈ C3(dom(f)) with open domain.
Let us fix some x ∈ dom(f) and a direction u ∈ Rn and consider the function
ϕ(x; t) := f(x+ tu) as a function of variable t ∈ dom(ϕ(x; ·)) ⊆ R. We denote
by:

Df(x)[u] := ϕ′(x; t) = ∇f(x)Tu,

D2f(x)[u, u] := ϕ′′(x; t) = uT∇f2(x)u = ‖u‖2∇f2(x) ,

D3f(x)[u, u, u] := ϕ′′′(x; t) = (D3f(x)[u]u)Tu.

Definition 8.1.1. We call the function f self-concordant if there exists a
constant κf ≥ 0 such that:

D3f(x)[u, u, u] ≤ κf ‖u‖3/2∇2f(x) , ∀x ∈ dom(f), u ∈ Rn.

We call f a standard self-concordant function if f is self-concordant with κf = 2.
Let F be a standard self-concordant function. We call it ν-self-concordant barrier
for the set Dom(F) if:

sup
u∈Rn

[2∇F (x)Tu− uT∇2F (x)u] ≤ ν,

for all x ∈ dom(F), where Dom(F) := dom(F). The value ν is called the
parameter of the barrier F .

For a given standard self-concordant function f and for a fixed x ∈ dom(f), we
define the local norm ‖·‖x and its dual norm as:

‖u‖x :=
[
uT∇2f(x)u

]1/2
, ‖u‖∗x := sup

‖v‖x≤1
uT v =

[
uT∇2f(x)−1u

]1/2
, (8.1.3)

166 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

for any vector u ∈ Rn. We also recall two functions ω : R+ → R+ as
ω(t) := t − ln(1 + t) and ω∗ : [0, 1) → R+ as ω∗(t) := −t − ln(1 − t). These
functions are convex, nonnegative and nondecreasing as illustrated in Figure
8.1. Further properties and estimates of a self-concordant function and a self-

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

t

ω
(t

)

ω(t) = t − ln(1+t)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

τ

ω
* (t

)

ω
*
(τ) = −τ − ln(1−τ)

Figure 8.1: The appearance of the functions ω and ω∗

concordant barrier can be found in [98, 142, 146, 159]. Throughout Part II
we will use the local norms defined in (8.1.3) and these two functions without
recalling them.

Let us assume that the feasible set Xi possesses a νi-self-concordant barrier Fi
for i = 1, · · · ,M . More precisely, we make the following assumption:
Asumption A. 8.1.10. For each i ∈ {1, · · · ,M}, the feasible set Xi of
(SepCOPmax) is bounded in Rni with int(Xi) 6= ∅ and possesses a self-concordant
barrier Fi with a parameter νi > 0.

Note that if Xi is polyhedral, ellipsoidal or formed by a set of linear matrix
inequalities (LMIs) and does not contain any straight line (the infinite line)
then Assumption A.8.1.10 is satisfied. Moreover, the assumption on the
boundedness of Xi is not restrictive as explained in Remark 7.1.1.
Remark 8.1.1. The theory developed in this paper can be easily extended to
the case Xi given as follows:

Xi := Xc
i ∩Xa

i , Xa
i := {xi ∈ Rni | Dixi = di} , (8.1.4)

by applying standard linear algebra routines, where the set Xc
i has nonempty

interior and is endowed with a νi-self-concordant barrier Fi for i ∈ {1, · · · ,M}.
If, for some i ∈ {1, · · · ,M}, Xi := Xc

i ∩ X
g
i , where X

g
i is a general convex

set, then we can remove Xg
i from the set of constraints by adding the indicator

function δXg
i
(·) of this set to the objective function component φi, i.e. φ̂i :=

φi + δXg
i
.

SMOOTHING VIA SELF-CONCORDANT BARRIER FUNCTIONS 167

Let us denote by xci the analytic center of Xi, which is defined as:

xci := argmin {Fi(xi) | xi ∈ int(Xi)} , i = 1, · · · ,M.

Under Assumption A.8.1.10, xc := (xc1, . . . , xcM) is well-defined due to [159,
Corollary 2.3.6]. To compute xc, one can apply the algorithms proposed in [142,
pp. 204–205]. Moreover, the following estimates hold:

Fi(xi)− Fi(xci) ≥ ω(‖xi − xci‖xc
i
) and ‖xi − xci‖xc

i
≤ νi + 2

√
νi, (8.1.5)

for all xi ∈ dom(Fi) and i = 1, · · · ,M , see [142, Theorems 4.1.13 and 4.2.6].
Without loss of generality, we can assume that Fi(xci) = 0. Otherwise, we can
shift Fi by F̃i(·) := Fi(·)− Fi(xci) for i = 1, · · · ,M .

Smooth approximation of the dual function

Let us define the following function:

g(y; t) :=
M∑
i=1

gi(y; t), (8.1.6)

where

gi(y; t) := max
xi∈int(Xi)

{
φi(xi) + yT (Aixi − bi)− tFi(xi)

}
, i = 1, · · · ,M,

(8.1.7)
where t > 0 is referred to as a smoothness parameter or penalty parameter.
Similar to [113, 135, 171, 218], we can show that g(·; t) is well-defined and
smooth due to strict convexity of Fi. We denote by x∗i (y; t) the unique solution
of the maximization problem in (8.1.7) and x∗(y; t) = (x∗1(y; t), . . . , x∗M (y; t)).
We refer to g(·; t) as a smoothed dual function of the original dual function
g(·) defined by (8.1.2) and to the maximization problem in (8.1.7) as primal
subproblem. The optimality condition for the primal subproblem (8.1.7) is:

0 ∈ ∂φi(x∗i (y; t)) +ATi y − t∇Fi(x∗i (y; t)), i = 1, · · · ,M (8.1.8)

where ∂φi(x∗i (y; t)) is the super-differential of φi at x∗i (y; t). Since problem
(8.1.7) is unconstrained and convex, this condition is necessary and sufficient.
Moreover, the condition (8.1.8) is in fact a system of generalized equations.
When φi is differentiable for i = 1, · · · ,M , it reduces to a system of nonlinear
equations.

Associated with g(·; t), we consider the following smoothed dual problem (or
master problem):

g∗(t) := min
y∈Y

g(y; t). (8.1.9)

168 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

We denote by y∗(t) a solution of (8.1.9) if it exists and by x∗(t) := x∗(y∗(t); t).
Before presenting the algorithms for solving the smoothed dual problem (8.1.9),
we provide some estimates to see the connection between the dual function g(·)
and the smoothed dual function g(·; t).

Local and global estimates of the dual function

This subsection provides a local estimate and global estimates between g(·) and
g(·; t). Moreover, we will show that g(y; t)→ g(y) as t→ 0+ for any y ∈ Rm.

Let F (x) :=
∑M
i=1 Fi(xi). Then the function F is also a self-concordant barrier

of X with a parameter ν :=
∑M
i=1 νi. Let:

λFi(x∗i (y; t)) := ‖∇Fi(x∗i (y; t))‖∗x∗
i
(y;t) .

For a given β ∈ (0, 1), we define a neighbourhood in Rm w.r.t. F and t > 0 as:

NF
t (β) := {y ∈ Rm | λFi(x∗i (y; t)) ≤ β, i = 1, · · · ,M} .

Since xc ∈ NF
t (β), we see that if ∂φ(xc) ∩ rangeAT 6= ∅ then NF

t (β) is
nonempty. Let ω(x∗(y; t)) :=

∑M
i=1ω

(
‖x∗i (y; t)−xci‖xc

i

)
and ω̄(x∗(y; t)) :=∑M

i=1 νiω
−1(ν−1

i ω∗(λFi(x∗i (y; t)))). The following lemma provides a local
estimate for the original dual function g.
Lemma 8.1.1. Suppose that Assumptions A.6.1.7 and A.8.1.10 are satisfied.
Suppose further that ∂φ(xc)

⋂
rangeAT 6= ∅. Then for any β ∈ (0, 1), the

function g(·; t) defined by (8.1.6) satisfies:

0 ≤ tω(x∗(y; t)) ≤ g(y)− g(y; t) ≤ t [ω̄(x∗(y; t)) + ν] , (8.1.10)

for all y ∈ NF
t (β). Consequently, one has:

0 ≤ g(y)− g(y; t) ≤ t [ω̄β + ν] , ∀y ∈ NF
t (β),

where ω̄β :=
∑M
i=1 νiω

−1(ν−1
i ω∗(β)) and ω−1 is the inverse function of ω.

Proof. For notational simplicity, we denote by x∗i := x∗i (y; t). The left-hand
side of (8.1.10) follows from Fi(xi)−Fi(xci) ≥ ω(‖xi − xci‖xc

i
) ≥ 0 due to (8.1.5).

We prove the right-hand side of (8.1.10). Since Fi is standard self-concordant,
xci = arg min

xi∈int(Xi)
Fi(xi) and Fi(xci) = 0, according to [142, Theorem 4.1.13], on

one hand, we have:

Fi(x∗i) = Fi(x∗i)− Fi(xci) ≤ ω∗(λFi(x∗i)). (8.1.11)

SMOOTHING VIA SELF-CONCORDANT BARRIER FUNCTIONS 169

provided that λFi(x∗i) < 1. On the other hand, let xi(α) := x∗i + α(x∗0i(y)− x∗i)
for α ∈ [0, 1). Since x∗i ∈ int(Xi) and α < 1, xi(α) ∈ int(Xi). By applying [146,
inequality 2.3.3], we have Fi(xi(α)) ≤ Fi(x∗i)− νi ln(1− α) which is equivalent
to:

Fi(xi(α)) ≤ Fi(x∗i)− νi ln(1− α). (8.1.12)

From the definition of gi(·; t) and gi(·), the concavity of φi, (8.1.11) and (8.1.12)
we have:

gi(y; t) ≥ max
α∈[0,1)

{
φi(xi(α)) + yT (Aixi(α)− bi)− tFi(xi(α))

}
≥ max
α∈[0,1)

{
α[φi(x∗0i(y)) + yT (Aix∗0i(y)− bi)] + (1− α)[φi(x∗i)

+ yT (Aix∗i − bi)]− tFi(x∗i) + νit ln(1− α)
}

(8.1.13)

(8.1.11)
≥ max

α∈[0,1)

{
αgi(y) + (1− α)gi(y; t) + tνi ln(1− α)− tω∗(λFi(x∗i))

}
.

By solving the last maximization problem in (8.1.13) we obtain the solution:

α∗ :=
{

0 if gi(y)− gi(y; t) ≤ tνi,
1− [gi(y)− gi(y; t)]−1νit otherwise.

Substituting this solution into (8.1.13) we get:

gi(y)−gi(y; t) ≤ tνi
{

1+ln
[
(gi(y)−gi(y; t))/(tνi)

]
+ω∗(λFi(x∗i))/νi

}
, (8.1.14)

provided that gi(y)− gi(y; t) > tνi. By rearranging (8.1.14) we obtain gi(y)−
gi(y; t) ≤ tνi

(
1 +ω−1(ω∗(λFi(x∗i))/νi))

)
. Summing up the last inequalities from

i = 1 to M we obtain the right-hand side of (8.1.10).

Remark 8.1.2. Lemma 8.1.1 implies that, for a given εg > 0, if we choose
tf := (ω̄β + ν)−1εg, then g(y; tf) ≤ g(y) ≤ g(y; tf) + εg for all y ∈ NF

t (β). The
last inequalities show that g(·; t) is a local approximation of g in NF

t (β).

Next, we provide a global approximation for g. Under Assumption A.6.1.7, the
solution set Y ∗ of the dual problem (8.1.1) is bounded. Let Y be a compact set
in Rm such that Y ∗ ⊆ Y and xci ∈ ri(dom(φi)) for i = 1, · · · ,M . We define:

Ki := max
y∈Y

max
ξi∈∂φi(xci)

{∥∥ξi +ATi y
∥∥∗
xc
i

}
∈ [0,+∞), i = 1, · · · ,M. (8.1.15)

The following lemma provides a global estimate of the dual function g.

170 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

Lemma 8.1.2. Suppose that Assumptions A.6.1.7 and A.8.1.10 are satisfied
and the constants Ki, i = 1, · · · ,M , are defined by (8.1.15). Then, for any
t > 0, we have:

tω(x∗(y; t)) ≤ g(y)− g(y; t) ≤ tDX(t), ∀y ∈ Y, (8.1.16)

where DX(t) :=
∑M
i=1 ζ̄(Ki; νi, t) and ζ̄(τ ; a, b) := a

(
1 + max

{
0, ln

(
τ
ab

)})
.

Consequently, for a given tolerance εg > 0 and a constant κ ∈ (0, 1) (e.g.
κ = 0.5), if:

0 < t ≤ t̄ := min
1≤i≤M

{
Ki

νi
κ1/κ,

(εg∑M
i=1[νi + ν1−κ

i Kκ
i]

)1/(1−κ)
}
, (8.1.17)

then g(y; t) ≤ g(y) ≤ g(y; t) + εg for all y ∈ Y .

Proof. The first inequality in (8.1.16) was proved in Lemma 8.1.1. We now
prove the second one. Let us denote by xτi (y) := xci + τ(x∗0i(y) − xci), where
τ ∈ [0, 1] and gci (y) := φi(xci) + yT (Aixci − bi). Since Fi is νi-self-concordant
and Fi(xci) = 0, it follows from [146, inequality (2.3.3)] that:

Fi(xτi (y)) ≤ Fi(xci)− νi ln(1− τ) = −νi ln(1− τ), τ ∈ [0, 1).

Combining this inequality and the concavity of φi and then using the definitions
of gci and gi(·) we have:

gi(y; t) ≥ max
τ∈[0,1)

{
φi(xτi (y)) + yTAi(xτi (y)− bi)− tFi(xτi (y))

}
≥ max

{
(1− τ)[φi(xci) + yT (Aixci − bi)] + τ [φi(x∗0i(y))

+ yT (Aix∗0i(y)− bi)] + tνi ln(1− τ) | τ ∈ [0, 1)
}

(8.1.18)

= max
τ∈[0,1)

{(1− τ)gci (y) + τgi(y) + tνi ln(1− τ)} .

Now, we maximize the function ξ(τ) := (1− τ)gci (y) + τgi(y) + tνi ln(1− τ) in
last line of (8.1.18) w.r.t. τ ∈ [0, 1) to obtain τ∗ =

[
1 − tνi

gi(y)−gc
i
(y)
]
+, where

[a]+ := max{0, a}. Therefore, if gi(y)− gci (y) ≤ tνi then τ∗ = 0. Otherwise, by
substituting τ∗ into the last line of (8.1.18), we obtain:

gi(y) ≤ gi(y; t) + tνi

(
1 +

[
ln((tνi)−1(gi(y)− gci (y)))

]
+

)
. (8.1.19)

SMOOTHING VIA SELF-CONCORDANT BARRIER FUNCTIONS 171

Furthermore, we note that gi(y)−gci (y) = maxxi∈Xi
{
φi(xi) + yT (Aixi − bi)

}
−[

φi(xci) + yT (Aixci − bi)
]
≥ 0 for all y ∈ Y and

gi(y)− gci (y)
φ is concave
≤ max

xi∈Xi

{
max

ξi∈∂φi(xci)

{[
ξi +ATi y

]T (xi−xci)
}}

≤ max
xi∈Xi

{
max

ξi∈∂φi(xci)

{∥∥ξi +ATi y
∥∥∗
xc
i

‖xi−xci‖xc
i

}}
(8.1.5)
≤ (νi + 2

√
νi) max

ξi∈∂φi(xci)

{∥∥ξi +ATi y
∥∥∗
xc
i

}
≤ Ki < +∞, ∀y ∈ Y. (8.1.20)

Summing up the inequalities (8.1.19) for i = 1, · · · ,M and then using (8.1.20)
we get (8.1.16).

Finally, for fixed κ ∈ (0, 1), since ln(x−1) ≤ x−κ for 0 < x ≤ κ1/κ, we have:

νit
(

1 +
[

ln Ki

νit

]
+

)
≤ νit

[
1 +

(Ki

νit

)κ]
≤
[
νi +Kκ

i ν
1−κ
i

]
t1−κ, ∀t ≤ Ki

νi
κ1/κ.

Consequently, if t ≤ min
{
Ki
νi
κ1/κ,

(
ε∑M

i=1
[νi+ν1−κ

i
Kκ
i

]

)1/(1−κ)
, i = 1, · · · ,M

}
then DX(t) ≤ ε, where DX(t) is defined in Lemma 8.1.2. Combining this
condition and (8.1.16) we get the last conclusion of Lemma 8.1.2.

If we choose κ = 0.5 in Lemma 8.1.2 then we have:

0 < t ≤ t̄ = min
1≤i≤M

{Ki

4νi
,
(εg∑M

i=1[νi +
√
νiKi]

)2}
.

sets Lemma 8.1.2 shows that if we fix tf ∈ (0, t̄] and minimize g(·, tf) over Y ,
then the obtained solution y∗(tf) is an εg-solution of (8.1.1). Since g(·; tf) is
continuously differentiable, smooth optimization techniques such as gradient-
based methods can be applied to minimize g(·; tf) over Y , see Sections 8.2 and
8.3 below.

If a strictly feasible point x̄ is available then we can also prove the following
estimate which is global and independent of the boundedness of Y .
Lemma 8.1.3. Suppose that Assumptions A.6.1.7 and A.8.1.10 are satisfied.
Let x̄ be a strictly feasible point to (SepCOPmax), i.e. x̄ ∈ int(X)∩{x | Ax = b}.
Then, for any t > 0, we have:

g(y)− φ(x̄) ≥ 0 and g(y; t)− φ(x̄) + tF (x̄) ≥ 0. (8.1.21)

172 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

Moreover, it holds that:

g(y; t)≤g(y)≤g(y; t)+t[ν+F (x̄)]+2
√
tν [g(y; t)+tF (x̄)−φ(x̄)]1/2 . (8.1.22)

Proof. The two inequalities in (8.1.21) are trivial due to the definitions of g(·),
g(·; t) and the feasibility of x̄. We only prove (8.1.22). Indeed, since x̄ ∈ int(X)
and x∗(y) ∈ X, if we define x∗τ (y) = x̄ + τ(x∗(y) − x̄) then xτ (y) ∈ int(X)
if τ ∈ [0, 1). By applying the inequality [146, p. 2.3.3] we have: F (xτ (y)) ≤
F (x̄)− ν ln(1− τ). Using this inequality together with the definition of g(·; t),
the concavity of φ and Ax̄ = b, we deduce:

g(y; t) = max
x∈int(X)

{
φ(x) + yT (Ax− b)− tF (x)

}
≥max
τ∈[0,1)

{
φ(xτ (y))+yT (Axτ (y)−b)−tF (xτ (y))

}
(8.1.23)

≥ max
τ∈[0,1)

{(1− τ)φ(x̄) + τg(y) + tν ln(1− τ)} − tF (x̄).

By solving the maximization problem on the right hand side of (8.1.23) and
then rearranging the results, we obtain:

g(y) ≤ g(y; t)+tν
(
1+
[
ln(g(y)−φ(x̄)

tν
)
]

+

)
+ tF (x̄), (8.1.24)

where [·]+ = max{·, 0}.

Moreover, it follows from (8.1.23) that:

g(y)− φ(x̄) ≤ 1
τ

[
g(y; t)− φ(x̄) + tF (x̄) + tν ln(1 + τ

1− τ)
]

≤ 1
τ

[g(y; t)− φ(x̄) + tF (x̄)] + tν

1− τ .

If we minimize the right hand side of this inequality in [0, 1) then we get g(y)−
φ(x̄) ≤ [(g(y; t)− φ(x̄) + tF (x̄))1/2 +

√
tν]2. Finally, we plug this inequality

into (8.1.24) to obtain:

g(y) ≤ g(y; t) + tν
[
1+2 ln

(
1+([g(y; t)−φ(x̄)+tF (x̄]/(tν))1/2

)]
+tF (x̄)

≤ g(y; t)+tν + tF (x̄) + 2
√
tν [g(y; t)− φ(x̄) + tF (x̄)]1/2

which is indeed (8.1.22).

SMOOTHING VIA SELF-CONCORDANT BARRIER FUNCTIONS 173

It follows from (8.1.22) that g(y) ≤ (1+2
√
tν)g(y; t)+t(ν+F (x̄))+2

√
tν(tF (x̄)−

φ(x̄)). Hence, g(y; t)→ g(y) as t→ 0+.

Finally, we prove some properties of g(y; ·) and g∗(·) defined by (8.1.9) which
will be used in the sequel. We notice that in Lemmas 8.1.1, 8.1.2 and 8.1.3 we
do not impose any additional assumption on the objective function except the
concavity of the objective functions in Assumption A.6.1.7.
Lemma 8.1.4. Suppose that Assumptions A.6.1.7 and A.8.1.10 are satisfied.
Then:

(a) The function g(y; ·) is convex and non-increasing in R++ for a given
y ∈ Rm. Moreover, we have:

g(y; t̂) ≥ g(y; t)− (t̂− t)F (x∗(y; t)). (8.1.25)

(b) The function g∗(·) defined by (8.1.9) is differentiable and non-increasing
in R++. Moreover, g∗(t) ≤ g∗ and limt↓0+ g∗(t) = g∗ = φ∗.

(c) The point x∗(y∗(t); t) is feasible to the original problem (SepCOPmax) and
limt↓0+ x∗(y∗(t); t) = x∗ ∈ X∗.

Proof. Since the function ξ(x, y, t) := φ(x) + yT (Ax − b) − tF (x) is strictly
concave in x and linear in t, it is well-known that g(y; t) = max{ξ(x, y, t) | x ∈
int(X)} is differentiable w.r.t. t and its derivative is given by ∂g(y;t)

∂t =
−F (x∗(y, t)) ≤ −ω(‖x∗(y, t)− xc‖xc) ≤ 0 due to (8.1.5). Thus g(y; ·) is
nonincreasing in t as stated in a). Since g(y; ·) is convex and differentiable,
and dg(y;t)

dt = −F (x∗(y; t)) ≤ 0, we have g(y; t̂) ≥ g(y; t) + (t̂ − t)dg(y;t)
dt =

g(y; t)− (t̂− t)F (x∗(y; t)).

From the definitions of g∗(·), g(y, ·) and y∗(·) in (8.1.9), and strong duality we
have:

g∗(t) = min
y∈Y

g(y; t) strong duality= max
x∈int(X)

min
y∈Y

{
φ(x)+yT (Ax−b)−tF (x)

}
= max
x∈int(X)

{φ(x)− tF (x) | Ax = b} (8.1.26)

= φ(x∗(t))− tF (x∗(t)).

It follows from the second line of (8.1.26) that g∗(·) is differentiable and
nonincreasing in R++. From the second line of (8.1.26), we also deduce
that x∗(t) is feasible to (SepCOPmax). The limit in c) was proved in [218,
Proposition 2]. Since x∗(t) is feasible to (SepCOPmax) and F (x∗(t))−F (xc) ≥ 0,

174 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

the last line of (8.1.26) implies that g∗(t) ≤ g∗. We also obtain the limit
limt↓0+ g∗(t) = g∗ = φ∗.

8.2 Path-following gradient-based decomposition
algorithm

This section aims at designing a path-following gradient-based algorithm to
solve the dual problem (8.1.1), analyzing the convergence of the algorithm and
estimating the local convergence rate.

Since F is a barrier function, g(·; t) is strictly convex and smooth, so that we
can write the optimality condition of (8.1.9) as:

∇g(y; t) = 0. (8.2.1)

This equation has a unique solution y∗(t). Moreover, the gradient of g(·; t) is
given as:

∇g(y; t) := Ax∗(y; t)− b. (8.2.2)

where x∗(y; t) is the solution of the primal subproblem (8.1.7).

Local Lipschitz-type continuity of the gradient mapping

Since F is a self-concordant barrier, ∇2F (x) � 0 for x ∈ int(X), we can define
a matrix norm |‖A‖|∗x :=

∥∥A∇2F (x)−1AT
∥∥

2 for any matrix A ∈ Rm×n. We
prove the following property for the function g(·; t).
Lemma 8.2.1. Suppose that Assumptions A.6.1.7 and A.8.1.10 are satisfied.
Then, for all t > 0 and y, ŷ ∈ Rm, one has:

[∇g(y; t)−∇g(ŷ; t)]T (y − ŷ) ≥
t ‖∇g(y; t)−∇g(ŷ; t)‖22

cA [cA + ‖∇g(y, t)−∇g(ŷ; t)‖2] , (8.2.3)

where cA := |‖A‖|∗x∗(y;t). Consequently, it holds that:

g(ŷ; t) ≤ g(y; t) +∇g(y; t)T (ŷ − y) + tω∗
(cA ‖ŷ − y‖2

t

)
, (8.2.4)

provided that ‖ŷ − y‖2 < t
cA

.

PATH-FOLLOWING GRADIENT-BASED DECOMPOSITION ALGORITHM 175

Proof. For notational simplicity, we denote by x∗ := x∗(y; t) and x̂∗ := x∗(ŷ; t).
From the definition (8.2.2) of ∇g(·; t) and the Cauchy-Schwarz inequality we
have:

[∇g(y; t)−∇g(ŷ; t)]T (y − ŷ) = (y − ŷ)TA(x∗−x̂∗). (8.2.5)

‖∇g(ŷ; t)−∇g(y; t)‖2 ≤ |‖A‖|
∗
x∗ ‖x̂∗ − x∗‖x∗ . (8.2.6)

It follows from the optimality condition (8.1.8) that:

AT (y − ŷ) = t[∇F (x∗)−∇F (x̂∗]− [ξ(x∗)− ξ(x̂∗)],

where ξ(·) ∈ ∂φ(·). By multiplying this relation by x∗ − x̂∗ and then using [142,
Theorem 4.1.7] and the concavity of φ we obtain:

(y−ŷ)TA(x∗−x̂∗) = t[∇F (x∗)−∇F (x̂∗)]T(x∗−x̂∗)−[ξ(x∗)−ξ(x̂∗)]T(x∗−x̂∗)

φ−concave
≥ t[∇F (x∗)−∇F (x̂∗)]T (x∗ − x̂∗)

≥
t ‖x∗ − x̂∗‖2x∗

1 + ‖x∗ − x̂∗‖x∗

(8.2.6)
≥

t [‖∇g(y; t)−∇g(ŷ; t)‖2]2

|‖A‖|∗x∗ [|‖A‖|∗x∗ + ‖∇g(y; t)−∇g(ŷ; t)‖2] .

Substituting this inequality into (8.2.5) we obtain (8.2.3).

By the Cauchy-Schwarz inequality, it follows from (8.2.3) that:

‖∇g(ŷ; t)−∇g(y; t)‖2 ≤
c2A ‖ŷ − y‖2

t− cA ‖ŷ − y‖2
, (8.2.7)

provided that ‖ŷ − y‖2 ≤ t/cA. Finally, by using the mean-value theorem, we
have:

g(ŷ; t) = g(y; t) +∇g(y; t)T (ŷ − y)

+
∫ 1

0
(∇g(y + s(ŷ − y); t)−∇g(y; t))T (ŷ − y)ds

(8.2.7)
≤ g(y; t)+∇g(y; t)T(ŷ−y)+cA ‖ŷ−y‖2

∫ 1

0

cAs ‖ŷ−y‖2
t−cAs ‖ŷ−y‖2

ds

= g(y; t) +∇g(y; t)T (ŷ − y) + tω∗(cA ‖ŷ − y‖2 /t),

which is indeed (8.2.4) provided that cA ‖ŷ − y‖2 < t.

176 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

Path-following gradient step

In this subsection, we analyze one step of the path-following gradient scheme in
order to derive an algorithm for solving (8.1.9). Indeed, let y ∈ Rm and t > 0
be the values at the current iteration. We compute the new values y+ and t+
for the next iteration as: {

t+ := t−∆t,
y+ := y − α∇g(y, t+),

(8.2.8)

where α := α(y; t) > 0 is the current step size and ∆t is the decrement of the
parameter t. Let us define the following notation:

x∗1 := x∗(y; t+), cA1 = |‖A‖|∗x∗(y;t+) and λ1 := ‖∇g(y; t+)‖2 . (8.2.9)

First, we prove an important property of the scheme (8.2.8).
Lemma 8.2.2. Under Assumptions A.6.1.7 and A.8.1.10, the following
inequality holds:

g(y+; t+) ≤ g(y; t)−
[
αλ2

1 − t+ω∗(cA1αλ1/t+)−∆tF (x∗1)
]
. (8.2.10)

Proof. Since t+ = t−∆t, by using (8.1.25) in Lemma 8.1.4 with t and t+, we
have:

g(y; t+) ≤ g(y; t) + ∆tF (x∗(y; t+)). (8.2.11)

Next, by (8.2.4) we have y+− y = −α∇g(y; t+) and λ1 := ‖∇g(y; t+)‖2. Hence,
we can derive:

g(y+; t+) ≤ g(y; t+)− αλ2
1 + t+ω

∗(cA1αλ1/t+). (8.2.12)

By plugging (8.2.11) into (8.2.12), we obtain (8.2.10).

Lemma 8.2.3. For any y ∈ Rm and t > 0, the constant cA := |‖A‖|∗x∗(y;t+)
is bounded. More precisely, cA ≤ c̄A := κ|‖A‖|∗xc < +∞. Furthermore, λ :=
‖∇g(y; t)‖2 is also bounded, i.e.: λ ≤ λ̄ := κ|‖A‖|∗xc + ‖Axc − b‖2, where κ :=∑M
i=1[νi + 2√νi].

Proof. For any x ∈ int(X), from the definition of |‖ · ‖|∗x, we can write:

|‖A‖|∗x = sup
{

[vTA∇2F (x)−1AT v]1/2 | ‖v‖2 = 1
}

= sup
{
‖u‖∗x | u = AT v, ‖v‖2 = 1

}
.

PATH-FOLLOWING GRADIENT-BASED DECOMPOSITION ALGORITHM 177

By using [142, Corollary 4.2.1], we can estimate |‖A‖|∗x as:

|‖A‖|∗x ≤ sup
{
κ ‖u‖∗xc | u = AT v, ‖v‖2 = 1

}
= κ sup

{[
vTA∇2F (xc)−1AT v

]1/2 | ‖v‖2 = 1
}

= κ|‖A‖|∗xc .

By substituting x = x∗(y; t) into the above inequality, we obtain the first
conclusion. In order to prove the second bound, we note that ∇g(y; t) =
Ax∗(y; t)− b. Therefore, by using (8.1.5), we can estimate:

‖∇g(y; t)‖2 = ‖Ax∗(y; t)− b‖2 ≤ ‖A(x∗(y; t)− xc)‖2 + ‖Axc − b‖2

≤ |‖A‖|∗xc ‖x∗(y; t)− xc‖xc + ‖Axc − b‖2

(8.1.5)
≤ κ|‖A‖|∗xc + ‖Axc − b‖2 ,

which is the second conclusion.

Next, we show how to choose the step size α and the decrement ∆t such that
g(y+; t+) < g(y; t) in Lemma 8.2.2. We note that x∗(y; t+) is obtained by
solving the primal subproblem (8.1.7) and the quantity cF := F (x∗(y; t+)) is
nonnegative (since F (x∗(y; t+)) ≥ F (xc) = 0) and computable. By Lemma
8.2.3, we see that:

α(t) := t

cA1(cA1 + λ1) ≥ α0(t) := t

c̄A(c̄A + λ̄)
, (8.2.13)

which shows that α(t) is bounded away from zero. We have the following
estimate.
Lemma 8.2.4. The step size α(t) defined by (8.2.13) satisfies:

g(y+; t+) ≤ g(y; t)− t+ω
(
λ1

cA1

)
+ ∆tF (x∗1). (8.2.14)

Proof. Let ϕ(α) := αλ2
1−t+ω∗(cA1t

−1
+ αλ1)−t+ω(λ1c

−1
A1). We can simplify this

function as ϕ(α) = t+[u+ ln(1− u)], where u := t−1
+ λ2

1α+ t−1
+ cA1λ1α− c−1

A1λ1.
The function ϕ(α) ≤ 0 for all u and ϕ(α) = 0 at u = 0 which leads to
α := t

cA1(cA1+λ1) .

Since t+ = t−∆t, if we choose ∆t := tω(c−1
A1λ1)

2[ω(c−1
A1λ1)+F (x∗1)] then:

g(y+; t+) ≤ g(y; t)− t

2ω(c−1
A1λ1). (8.2.15)

178 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

Therefore, the update rule for t can be written as:

t+ := (1− σ)t, where σ := ω(c−1
A1λ1)

2[ω(c−1
A1λ1) + F (x∗1)]

∈ (0, 1). (8.2.16)

The algorithm

By combining the above analysis, we can describe in detail the path-following
gradient-based decomposition algorithm as follows.

Algorithm 8.2.1.(Path-following gradient decomposition algorithm).
Initialization: Perform the following steps:

1. Choose an initial value t0 > 0 and fix the tolerances εt and ε.

2. Take an initial point y0 ∈ Rm and solve (8.1.7) in parallel to obtain
x∗0 := x∗(y0; t0).

3. Compute c0A := |‖A‖|∗x∗0 , λ0 :=
∥∥∇g(y0; t0)

∥∥
2, ω0 := ω(λ0/c

0
A) and c0F :=

F (x∗0).

Iteration: For k = 0, 1, · · · , perform the following steps:

Step 1: If tk ≤ εt and λk ≤ ε then terminate.

Step 2: Update the penalty parameter: tk+1 := tk(1− σk), where σk :=
ωk

2(ωk+ck
F

) .

Step 3: Solve (8.1.7) in parallel to obtain x∗k := x∗(yk, tk+1). Then form
a gradient vector ∇g(yk; tk+1) := Ax∗k − b.

Step 4: Compute λk+1 :=
∥∥∇g(yk; tk+1)

∥∥
2, c

k+1
A := |‖A‖|∗x∗

k
, ωk+1 :=

ω(λk+1/c
k+1
A) and ck+1

F := F (x∗k).

Step 5: Compute the step size αk+1 := tk+1

ck+1
A

(ck+1
A

+λk+1) .

Step 6: Update yk+1 as yk+1 := yk − αk+1∇g(yk, tk+1).

End.

The main step of Algorithm 8.2.1 is Step 3, where we need to solve M primal
subproblems in parallel. From the update rule (8.2.16) of tk we can see that
σk → 0+ as F (x∗k)→∞. This happens when the barrier function is approaching

PATH-FOLLOWING GRADIENT-BASED DECOMPOSITION ALGORITHM 179

the boundary of the feasible set X. Hence, the parameter t is not decreased.
Let c̄F be a sufficiently large positive constant. We can modify the update rule
of t as:

tk+1 :=
{
tk(1− ωk

2(ωk+ck
F

)) if ckF ≤ c̄F ,
tk otherwise,

(8.2.17)

In this case, the sequence {tk} generated by Algorithm 8.2.1 might not converge
to zero. Moreover, the step size αk computed at Step 5 depends on the parameter
tk. If tk is small then Algorithm 8.2.1 makes short steps towards a solution of
(8.1.9).

Convergence analysis

Let us assume that t = infk≥0 tk > 0. Then, the following theorem shows the
convergence of Algorithm 8.2.1.
Theorem 8.2.1. Suppose that Assumptions A.6.1.7 and A.8.1.10 are
satisfied. Suppose further that the sequence {(yk, tk, λk)}k≥0 generated by
Algorithm 8.2.1 satisfies t := infk≥0{tk} > 0. Then:

lim
k→∞

∥∥∇g(yk, tk+1)
∥∥

2 = 0. (8.2.18)

Consequently, there exists a limit point y∗ of {yk} such that y∗ is a solution of
(8.1.9) at t = t.

Proof. It is sufficient to prove (8.2.18). Indeed, from (8.2.15) we have:

k∑
i=0

tk
2 ω(λk+1/c

k+1
A) ≤ g(y0; t0)− g(yk+1; tk+1) ≤ g(y0; t0)− g∗.

Since tk ≥ t > 0 due to assumption and ck+1
A ≤ c̄A := |‖A‖|∗xc due to Lemma

8.2.3, the above inequality leads to:

t

2

∞∑
i=0

ω(λk+1/c̄A) ≤ g(y0; t0)− g∗ < +∞.

This inequality implies limk→∞ ω(λk+1/c̄A) = 0 which leads to limk→∞ λk+1 =
0. By the definition of λk we have limk→∞

∥∥∇g(yk; tk+1)
∥∥

2 = 0.

Remark 8.2.2. From the proof of Theorem (8.2.1), we can fix ckA ≡ c̄A :=
κ|‖A‖|∗xc in Algorithm 8.2.1. This value can be computed a priori.

180 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

Local convergence rate

Let us analyze the local convergence rate of Algorithm 8.2.1. Let y0 be an
initial point of Algorithm 8.2.1 and y∗(t) be the unique solution of (8.1.9). We
denote by:

r0(t) :=
∥∥y0 − y∗(t)

∥∥
2 and c̄A := κ|‖A‖|∗xc . (8.2.19)

For simplicity of discussion, we assume that the smoothness parameter tk is
fixed at t > 0 sufficiently small for all k ≥ 0 (see Lemma 8.1.3). The convergence
rate of Algorithm 8.2.1 in the case tk = t is stated in the following lemma.
Lemma 8.2.5 (Local convergence rate). Suppose that the initial point y0 is
chosen such that g(y0; t)− g∗(t) ≤ c̄Ar0(t). Then:

g(yk; t)− g∗(t) ≤ 4c̄2Ar0(t)2

4c̄Ar0(t) + tk
. (8.2.20)

Consequently, the local convergence rate of Algorithm 8.2.1 is at least
O(4c̄2Ar0(t)2

tk).

Proof. Let rk :=
∥∥yk − y∗∥∥2, ∆k := g(yk; t) − g∗(t) ≥ 0, y∗ := y∗(t), λk :=∥∥∇g(yk; t)

∥∥
2 and ck := |‖A‖|∗x∗(yk;t). By using the fact that ∇g(y∗; t) = 0 and

(8.2.3) we have:

r2
k+1 =

∥∥yk+1 − y∗
∥∥2 =

∥∥yk − αk∇g(yk; t)− y∗
∥∥2

= r2
k − 2αk∇g(yk; t)T (yk − y∗) + α2

k

∥∥∇g(yk; t)
∥∥2

(8.2.3)
≤ r2

k − 2αk
tλ2
k

ckA(ckA + λk)
+ α2

kλ
2
k

(8.2.13)= r2
k − α2

kλ
2
k.

This inequality implies that rk ≤ r0 for all k ≥ 0. First, by the convexity of
g(·; t) and the relation rk ≤ r0 we have:

∆k = g(yk; t)− g∗(t) ≤
∥∥∇g(yk; t)

∥∥
2

∥∥yk − y∗∥∥2 ≤ λk
∥∥y0 − y∗

∥∥
2 ≤ λkr0(t).

This inequality implies:
λk ≥ ∆k/r0(t). (8.2.21)

Since tk = t > 0 is fixed for all k ≥ 0, it follows from (8.2.10) that:

g(yk+1; t) ≤ g(yk; t)− tω(λk/ck).

ACCELERATING GRADIENT DECOMPOSITION ALGORITHM 181

By using the definition of ∆k, the last inequality is equivalent to:

∆k+1 ≤ ∆k − tω(λk/ck). (8.2.22)

Next, since ω(τ) ≥ τ2

4 for all 0 ≤ τ ≤ 1 and ck ≤ c̄A due to Lemma 8.2.3, it
follows from (8.2.21) and (8.2.22) that:

∆k+1 ≤ ∆k −
t∆2

k

4r0(t)2c̄2A
, (8.2.23)

for all ∆k ≤ c̄Ar0(t). This inequality also implies ∆k ≤ ∆0 for all k ≥ 0.

Let η := t/(4r0(t)2c̄2A). Since ∆k ≥ 0, (8.2.23) implies:
1

∆k+1
≥ 1

∆k(1− η∆k) = 1
∆k

+ η

(1− η∆k) ≥
1

∆k
+ η.

By induction, this inequality leads to 1
∆k
≥ 1

∆0
+ ηk which is equivalent to

∆k ≤ ∆0
1+η∆0k

provided that ∆0 ≤ c̄Ar0(t). Since η := t/(4r0(t)2c̄2A), this
inequality is indeed (8.2.20). The last conclusion follows from (8.2.20).

Remark 8.2.3. Let us fix t := ε. It follows from (8.2.20) that the worst-case
complexity of Algorithm 8.2.1 to obtain an ε-solution yk in the sense g(yk; ε)−
g∗(ε) ≤ ε is O

(
c̄2Ar

2
0

ε2

)
. We note that c̄A = κ|‖A‖|∗xc =

∑M
i=1(νi + 2√νi)|‖Ai‖|∗xc

i
.

However, in most cases, the parameter νi depends linearly on the dimension
of the problem. Therefore, we can conclude that the worst-case complexity of
Algorithm 8.2.1 is O

(
(n‖A‖∗xcr0)2

ε2

)
.

8.3 Accelerating gradient decomposition algorithm

Let us fix t = t > 0 and define g(·) := g(·; t). The function g(·) is convex and
differentiable but its gradient is not Lipschitz continuous, we can not apply
Nesterov’s fast gradient algorithm [142] to solve (8.1.9). In this section, we
modify Nesterov’s fast gradient method in order to obtain an accelerating
gradient method for solving (8.1.9).

One step of the modified fast gradient method is described as follows. Let y and
v be given points in ∈ Rm, we compute new points y+ and v+ as follows:{

y+ := v − α∇g(v),
v+ = β1y+ + β2y + β3v,

(8.3.1)

where α > 0 is the step size, β1, β2 and β3 are three parameters which will be
chosen appropriately. First, we prove the following estimate.

182 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

Lemma 8.3.1. Let θ ∈ (0, 1) be a given parameter, α := t
ĉA(ĉA+λ) and

ρ := t/(2θĉ2A) for some parameter ĉA ≥ cA, where λ :=
∥∥∇g(v)

∥∥
2 and

cA := |‖A‖|∗x∗(v;t). We define two vectors:

r := θ−1[v − (1− θ)y] and r+ = r − ρ∇g(v). (8.3.2)

Then the new point y+ generated by (8.3.1) satisfies:

1
θ2

[
g(y+)−g∗

]
+ ĉ2A

t

∥∥r+ − y∗
∥∥2

2 ≤
(1−θ)
θ2

[
g(y)−g∗

]
+ ĉ2A

t

∥∥r − y∗∥∥2
2 , (8.3.3)

provided that λ ≤ ĉA, where y∗ := y∗(t) and g∗ := g(y∗).

Proof. Since y+ = v − α∇g(v) with α = t
ĉA(ĉA+λ) , it follows from (8.2.4) that:

g(y+) ≤ g(v)− tω
(∥∥∇g(v)

∥∥
2

ĉA

)
. (8.3.4)

Now, since ω(τ) ≥ τ2/4 for all 0 ≤ τ ≤ 1, the inequality (8.3.4) implies:

g(y+) ≤ g(v)− t

4ĉ2A

∥∥∇g(v)
∥∥2

2 , (8.3.5)

provided that
∥∥∇g(v)

∥∥
2 ≤ ĉA. For any u := (1 − θ)y + θy∗ and θ ∈ (0, 1) we

have:

g(v) ≤ g(u) +∇g(v)T (v − u) ≤ (1− θ)g(y) + θg(y∗)

+∇g(v)T (v − (1− θ)y − θy∗). (8.3.6)

By substituting (8.3.6) and the relation v− (1− θ)y = θr into (8.3.5) we obtain:

g(y+) ≤ (1− θ)g(y) + θg∗ + θ∇g(v)T (r − y∗)− t

4ĉ2A

∥∥∇g(v)
∥∥2

2

= (1− θ)g(y) + θg∗ + θ2ĉ2A
t

[∥∥r − y∗∥∥2
2 −

∥∥∥∥r − t

2θĉ2A
∇g(v)− y∗

∥∥∥∥2

2

]

= (1− θ)g(y) + θg∗ + θ2ĉ2A
t

[∥∥r − y∗∥∥2
2 −

∥∥r+ − y∗
∥∥2

2

]
. (8.3.7)

Since 1/θ2 = (1− θ)/θ2 + 1/θ, by rearranging (8.3.7) we obtain (8.3.3).

ACCELERATING GRADIENT DECOMPOSITION ALGORITHM 183

Next, we consider the update rule of θ. We can see from (8.3.3) that if θ+ is
updated such that (1− θ+)/θ2

+ = 1/θ2 then g(y+) < g(y). The last condition
leads to:

θ+ = 0.5θ(
√
θ2 + 4− θ).

The following lemma was proved in Chapter 7.
Lemma 8.3.2. The sequence {θk} generated by θk+1 := 0.5θk[(θ2

k + 4)1/2− θk]
and θ0 = 1 satisfies:

1
2k + 1 ≤ θk ≤

2
k + 2 , ∀k ≥ 0.

By Lemma 8.3.1, we have r+ = r − ρ∇g(v) and r+ = 1
θ+

(v+ − (1 − θ+)y+).
From these relations, we deduce that:

v+ = (1− θ+)y+ + θ+(r − ρ∇g(v)). (8.3.8)

Note that if we combine (8.3.8) and (8.3.1) then:

v+ = (1−θ+−
ρθ+

α
)y+−

(1− θ)θ+

θ
y+
(

1
θ

+ ρ

α

)
θ+v.

This is in fact the second line of (8.3.1), where β1 := 1− θ+ − ρθ+α
−1, β2 :=

−(1− θ)θ+θ
−1 and β3 := (θ−1 + ρα−1)θ+.

Before presenting the algorithm, we show how to choose ĉA to ensure the
condition λ ≤ ĉA. Indeed, from Lemma 8.2.3 we see that if we choose ĉA :=
c̄A + ‖Axc − b‖2 then λ ≤ ĉA. Now, by combining all the above analysis, we
can describe the modified fast gradient algorithm in detail as follows:

Algorithm 8.3.1.(Modified fast gradient decomposition algorithm).
Initialization: Perform the following steps:

1. Given a tolerance ε > 0. Fix the parameter t at a certain value t > 0 and
compute ĉA := κ|‖A‖|∗xc + ‖Axc − b‖2.

2. Take an initial point y0 ∈ Rm.

3. Set θ0 := 1 and v0 := y0.

Iteration: For k = 0, 1, · · · , perform the following steps:

Step 1: If λk ≤ ε then terminate.

Step 2: Compute rk := θ−1
k [vk − (1− θk)yk].

184 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

Step 3: Update yk+1 as yk+1 := vk − αk∇g(vk; t), where αk = t
ĉA(ĉA+λk) .

Step 4: Update θk+1 := 1
2θk[(θ2

k + 4)1/2 − θk].

Step 5: Update vk+1 := (1− θk+1)yk+1 + θk+1(rk − ρk∇g(vk; t)), where
ρk := t

2ĉ2
A
θk
.

Step 6: Solve (8.1.7) in parallel to obtain x∗k+1 := x∗(vk+1, t). Then,
form a gradient vector ∇g(vk+1; t) := Ax∗k+1 − b and compute λk+1 :=∥∥∇g(vk+1; t)

∥∥
2.

End.

The core step of Algorithm 8.3.1 is Step 6, where we need to solve M primal
subproblems of the form (8.1.7) in parallel.

The following theorem shows the convergence of Algorithm 8.3.1.
Theorem 8.3.1. Let y0 ∈ Rm be an initial point of Algorithm 8.3.1.Then the
sequence {(yk, vk)}k≥0 generated by Algorithm 8.3.1 satisfies:

g(yk; t)− g∗(t) ≤ 4ĉ2A
t(k + 1)2

∥∥y0 − y∗(t)
∥∥2
. (8.3.9)

Proof. By the choice of ĉA the condition λk ≤ ĉA is always satisfied. From
(8.3.3) and the update rule of θk, we have:

1
θ2
k

[
g(yk+1)− g∗

]
+ ĉ2A

t

∥∥rk+1 − y∗
∥∥2

2 ≤
1

θ2
k−1

[
g(yk)− g∗

]
+ ĉ2A

t

∥∥rk − y∗∥∥2
2 .

By induction, we obtain from this inequality that:

1
θ2
k−1

[
g(yk)− g∗

]
≤ 1
θ2

0

[
g(y1)− g∗

]
+ ĉ2A

t

∥∥r1 − y∗
∥∥2

2

≤ 1− θ0

θ2
0

[
g(y0)− g∗

]
+ ĉ2A

t

∥∥r0 − y∗
∥∥2

2 ,

for k ≥ 1. Since θ0 = 1 and y0 = v0, we have r0 = y0 and the last inequality
implies g(yk)− g∗ ≤ ĉ2Aθ

2
k−1
t

∥∥y0 − ȳ
∥∥2

2. Since θk−1 ≤ 2
k+1 due to Lemma 8.3.2,

we obtain (8.3.9).

Remark 8.3.2. Let ε > 0 be a given accuracy. If we fix the penalty parameter
t := ε then the worst-case complexity of Algorithm 8.3.1 is O(2ĉAr0

ε), where
r0 := r0(t) is defined as above.

NUMERICAL TESTS 185

Note that the constant ĉA in Algorithm 8.3.1 looks rather large. Using this
upper bound would lead to a slow convergence. In order to tune a better
practical upper bound, let us take a constant ĉA > 0 and define:

R(ĉA; t) := {y ∈ Rm | ‖∇g(y; t)‖2 ≤ ĉA} . (8.3.10)

It is obvious that y∗(t) ∈ R(ĉA; t). This set is a neighbourhood of the solution
y∗(t) of problem (8.1.9). Moreover, by and observation that the sequence

{
vk
}

converges to the solution y∗(t), we can assume that for k sufficiently large,{
vl
}
l≥k ⊆ R(ĉA; t). In this case, we can apply the following switching strategy.

Remark 8.3.3. (Switching strategy) We can combine Algorithms 8.2.1 and
8.3.1 to obtain a switching variant:

• First, we apply Algorithm 8.2.1 to find a point ŷ0 ∈ Rm and t > 0 such
that

∥∥∇g(ŷ0; t)
∥∥

2 ≤ ĉA.

• Then, we switch to use Algorithm 8.3.1.

We notice that the sequence {λk}k≥0 may not be monotone, the switching
strategy does not ensure global convergence. However, as we will see in the
following numerical tests, this variant still works well if we appropriately tune
the parameter ĉA.

8.4 Numerical tests

In this section, we test the switching variant of Algorithms 8.2.1 and 8.3.1
proposed in Remark 8.3.3 which we name by PFGDA for solving the following
convex programming problem:

min
x∈Rn

γ ‖x‖1 + f(x)
s.t. Ax = b, l ≤ x ≤ u,

(8.4.1)

where f(x) :=
∑n
i=1 fi(xi), and fi : R → R is a convex function, A ∈ Rm×n,

b ∈ Rm and l, u ∈ Rn such that l ≤ 0 < u.

We note that the feasible set X := [l, u] can be decomposed into n intervals
Xi := [li, ui] and each interval is endowed with a 2-self concordant barrier
Fi(xi) := − ln(xi− li)− ln(ui−xi) + 2 ln((ui− li)/2) for i = 1, . . . , n. Moreover,
if we define φ(x) := −

∑n
i=1[fi(xi) + γ |xi|] then φ is concave and separable.

Problem (8.4.1) can be reformulated equivalently to (SepCOPmax).

186 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

The smoothed dual function components gi(y; t) of (8.4.1) can be written as:

gi(y; t) = max
li<xi<ui

{
−fi(xi)− γ |xi|+ (ATi y)xi − tFi(xi)

}
− bT y/n,

for i = 1, . . . , n. This one-variable minimization problem is nonsmooth but
it can be solved easily. In particular, if fi is affine then this problem can be
solved in a closed form. In case fi is smooth, we can reformulate (8.4.1) into a
smooth convex program by adding n slack variables and 2n additional inequality
constraints to handle the ‖x‖1 part.

We have implemented PFGDA in C++ running on a 16 cores Intel ®Xeon 2.7GHz
workstation with 12 GB of RAM. The algorithm was parallelized by using
OpenMP. We terminated PFGDA if:

optim :=
∥∥∇g(yk; tk)

∥∥
2 /max

{
1,
∥∥∇g(y0; t0)

∥∥
2

}
≤ 10−3 and tk ≤ 10−2.

We have also implemented two algorithms, Algorithm 7.3.1 and Algorithm 7.4.1
in Chapter 7 which we named 2pDecompAlg and 2dDecompAlg, respectively,
for solving problem (8.4.1) and compared them with PFGDA. We terminated
2pDecompAlg and 2dDecompAlg by using the same conditions as in Chapter7
with the tolerances εfeas = εfun = εobj = 10−3 and jmax = 3. We also terminated
all three algorithms if the maximum number of iterations maxiter := 10, 000
was reached. In the last case we declare that the algorithm is failed.

Basis pursuit problems

If the function f(x) ≡ 0 for all x then problem (8.4.1) becomes a bound
constrained basis pursuit problem to recover the sparse coefficient vector x of
given signals based on a transform operator A and a vector of observations b.
We assume that A ∈ Rm×n, b ∈ Rm and x ∈ Rn, where m < n and x has k
nonzero elements (k � n).

In this case, we only illustrate PFGDA by applying it to solve some small size
test problems. In order to generate a test problem, we generate a random
orthogonal matrix A and a random vector x0 which has k nonzero elements.
Then we define vector b as b := Ax0.

We test PFGDA on the four problem instances such that [m,n, k] are [50, 128, 14],
[100, 256, 20], [200, 512, 30] and [500, 1024, 50]. The results reported by PFGDA
are plotted in Figure 8.2.

As we can see from these figures that the vector of recovered coefficients x
matches very well the vector of original coefficients x0 in these four problems.
PFGDA requires 376, 334, 297 and 332 iterations, respectively in the four problem
instances.

NUMERICAL TESTS 187

0 50 100 150 200 250

−2

0

2

4

[m = 100, n = 256, k = 20]

0 100 200 300 400 500

−1

0

1

2

3

[m = 200, n = 512, k = 30]

0 200 400 600 800 1000

−2

0

2

4

6

[m = 500, n = 1024, k = 50]

Original coefficients

Recovered coefficients

0 20 40 60 80 100 120
−2

−1

0

1

2

3
[m = 50, n = 128, k = 14]

Original coefficients

Recovered coefficients

Original coefficients

Recovered coefficients

Original coefficients

Recovered coefficients

Figure 8.2: Illustration of PFGDA via the basis pursuit problem

Nonlinear separable convex programming problems

In order to test the performance of PFGDA, we generate in this case a large
test-set of problems and compare the performance of PFGDA with 2pDecompAlg
and 2dDecompAlg. The performance profiles were built as in Chapter 7.

The test problems were generated as follows. We chose the objective function
fi(xi) := e−γixi − 1, where γi > 0 is a given parameter for i = 1, . . . , n. Matrix
A was generated randomly in [−1, 1] and then was normalized by A/ ‖A‖∞.
We generated a sparse vector x0 randomly in [−2, 2] with the density 2% and
defined a vector b := Ax̄. Vector γ := (γ1, · · · , γn)T was sparse and generated
randomly in [0, 0.5]. The lower bound li and the upper bounds ui were set to
−3 and 3, respectively for all i = 1, . . . , n.

We tested three algorithms on a collection of 50 random problem instances with
m from 200 to 1, 500 and n from 1, 000 to 15, 000. The performance profiles are
plotted in Figure 8.3.

Based on this test, we can make the following observations. Both algorithms,
PDGDA and 2dDecompAlg, can solve all the test problems, while 2pDecompAlg can
only solve 46/50 (92%) problems. PFGDA requires a significantly fewer iterations

188 PATH-FOLLOWING GRADIENT DECOMPOSITION ALGORITHMS

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total number of iterations

PFGDA

2pDecompAlg

2dDecompAlg

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total computational time

PFGDA

2pDecompAlg

2dDecompAlg

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total number of nonzero elements

PFGDA

2pDecompAlg

2dDecompAlg

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total number of matching elements

PFGDA

2pDecompAlg

2dDecompAlg

Figure 8.3: Performance profiles in log2 scale of three algorithms.

than 2pDecompAlg and 2dDecompAlg, and it has the best performance on 100%
problems in terms of number of iterations. 2dDecompAlg is the best in terms
of computational time where it reaches 100% the test problem with the best
performance. However, the number of nonzero elements of the obtained solution
in PFGDA matches very well the vector of original coefficients x0, while it is
rather bad in 2pDecompAlg and 2dDecompAlg as we can see from the last figure.
In other words, 2dDecompAlg is not good at finding a sparse solution in this
example.

8.5 Conclusion

This chapter has devoted to studying self-concordant barrier smoothing
technique and gradient-type decomposition methods for separable convex
optimization. We have proved some local and global estimates between the
original dual function and the smoothed dual function. Then, two gradient-
type decomposition algorithms have been proposed. The first algorithm is a
path-following gradient decomposition method and the second is a modified fast
gradient decomposition method. The convergence of both algorithms has been

CONCLUSION 189

investigated and their convergence rate has been established. These algorithms
possess two advantages as indicated earlier compared to the methods proposed
in the previous chapter. Finally, numerical tests have been implemented to
verify the performance of these algorithms.

Chapter 9

An inexact perturbed
path-following decomposition
algorithm

In Chapter 8 we have studied a path-following gradient decomposition method for
solving (SepCOPmax). This method does not require any assumption imposed
on the objective function of the problem except concavity. In this chapter, we
take a closer look at the structure of this function where we assume that the
objective function of problem (SepCOPmax) is self-concordant or is compatible
with the barrier of the feasible set [146]. Such problems also arise in many cases
such as linear and quadratic programming. This allows us to apply interior-
point decomposition methods to solve the smoothed dual problem instead of
gradient-type methods.

Contribution of Chapter 9. The contribution of this chapter is as follows:

a) We propose a new two-phase inexact perturbed path-following decomposi-
tion algorithm for solving (SepCOPmax). Both phases allow one to solve
the primal subproblems approximately. The whole algorithm is highly
parallelizable.

b) The convergence and the worst-case complexity of the algorithm are
investigated under standard assumptions used in any interior point
method.

191

192 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

c) As a special case, an exact path-following decomposition algorithm studied
in [131, 135, 171, 218] is obtained. However, for this variant we obtain
better values for the radius of the neighborhood of the central path
compared to those from related existing methods.

Let us emphasize some differences between the proposed method and related
existing methods. First, the new algorithm allows us to solve the primal
subproblems inexactly, where the inexactness in the early iterations of the
path-following algorithm can be high, resulting in significant time savings when
the solution of the primal subproblems requires a high computational cost.
Note that the proposed algorithm is different from the one considered in [220]
for linear programming, where the inexactness of the primal subproblems was
defined in a different way. Then, by analyzing directly the convergence of the
algorithm based on the monograph [142], the theory presented in this chapter is
self-contained. Moreover, it also allows us to optimally choose the parameters
and to trade-off between the convergence rate of the master problem and the
accuracy of the primal subproblems. Finally, in the exact case, the radius of
the neighborhood of the central path is (3−

√
5)/2 ≈ 0.38197 which is larger

than 2−
√

3 ≈ 0.26795 of the previous methods [131, 135, 171, 218]. Moreover,
since the performance of an interior point algorithm crucially depends on the
parameters of the algorithm, we analyze directly the path-following iterations
to select these parameters in an appropriate way.

Outline of Chapter 9. This chapter is organized as follows. Section 9.1
considers the self-concordance of the smoothed dual function and shows how to
recover the optimality and the feasibility gaps of the original problem. Section
9.2 presents an inexact perturbed path-following decomposition algorithm and
investigates the convergence and the worst-case complexity of the algorithm.
Section 9.3 deals with an exact variant of the algorithm presented in Section 9.2.
Section 9.4 discusses implementation details of the method. Section 9.5 provides
a numerical example to test the performance of the proposed algorithms. We
end this chapter with some conclusion.

9.1 Self-concordance of smoothed dual function

If the function −φi of problem (SepCOPmax) is self-concordant on dom(φi)
with a parameter κφi , then the family of the functions tF (·)− φi(·) is also self-
concordant on dom(φi) ∩ dom(Fi). Consequently, the smoothed dual function
g(·; t) is self-concordant due to Legendre’s transformation as stated in the
following lemma, see e.g. [131, 135, 171, 218].

SELF-CONCORDANCE OF SMOOTHED DUAL FUNCTION 193

Lemma 9.1.1. Suppose that Assumptions A.6.1.7 and A.8.1.10 are satisfied.
Suppose further that −φi is κφi-self-concordant. Then, for t > 0, the
function gi(·; t) defined by (8.1.7) is self-concordant with the parameter κgi :=
max{κφi , 2/

√
t}, i = 1, · · · ,M . Consequently, g(·; t) is self-concordant with the

parameter κg := max
1≤i≤M

κgi .

Similar to the standard path-following methods studied in [142, 146], in the
following discussion, we assume that φi is linear as stated in the following
assumption.
Asumption A.9.1.11. The function φi is linear, i.e. φi(xi) := cTi xi for
i = 1, · · · ,M .

Let c := (c1, · · · , cM) be a column vector formed from sub-vectors ci for i =
1, · · · ,M . Assumption A.9.1.11 and Lemma 9.1.1 imply that g(·, t) is 2√

t
-self-

concordant. Since φi is linear, the optimality condition (8.1.8) is rewritten as:

c+AT y − t∇F (x∗(y; t)) = 0. (9.1.1)
Let Y ⊆ Rm be the restricted domain of the dual function g as considered
in (8.1.15). The following lemma provides an explicit formula to compute the
derivatives of g(·; t). The proof can be found in [135, 218].
Lemma 9.1.2. Suppose that Assumptions A.6.1.7, A.8.1.10 and A.9.1.11
are satisfied. Then the gradient vector and the Hessian matrix of g(·, t) on Y
are respectively given as:

∇g(y; t) = Ax∗(y; t)− b and ∇2g(y; t) = t−1A∇2F (x∗(y; t))−1AT , (9.1.2)

where x∗(y; t) is the solution of the primal subproblem (8.1.7).

Note that since A is full-row rank and ∇2F (x∗(y; t)) � 0, we can see that
∇2g(y; t) � 0 for any y ∈ Y . Now, since g(·; t) is 2√

t
self-concordant, if we

define:
g̃(y; t) := t−1g(y; t), (9.1.3)

then g̃(·; t) is standard self-concordant, i.e. κg̃ = 2, due to [142, Corollary 4.1.2].
For a given vector v ∈ Rm, we define the local norm ‖v‖y of v w.r.t. g̃(·, t)
as ‖v‖y := [vT∇2g̃(y; t)v]1/2 and the corresponding dual norm ‖u‖∗y of u as
‖u‖∗y := [uT∇2g̃(y; t)−1u]1/2.

Optimality and feasibility recovery

In this subsection, we show the relations between the master problem (8.1.9),
the original dual problem (8.1.1) and the original primal problem (SepCOPmax).

194 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

Let us define the Newton decrement of g̃(·, t) as follows:

λ = λg̃(·;t)(y) := ‖∇g̃(y; t)‖∗y =
[
∇g̃(y; t)∇2g̃(y; t)−1∇g̃(y; t)

]1/2
. (9.1.4)

The following lemma shows the gap between g(y; t) and g∗(t).
Lemma 9.1.3. Suppose that Assumptions A.6.1.7, A.8.1.10 and A.9.1.11
are satisfied. Then, for any y ∈ Y and t > 0 such that λg̃(·,t)(y) ≤ β < 1, we
have:

0 ≤ tω(λg̃(·,t)(y)) ≤ g(y; t)− g∗(t) ≤ tω∗(λg̃(·,t)(y)). (9.1.5)

Moreover, it holds that:

(c+AT y)T (u− x∗(y; t)) ≤ tν and ‖Ax∗(y; t)− b‖∗y ≤ tβ, (9.1.6)

for all u ∈ X.

Proof. Since g̃(·; t) is standard self-concordant and y∗(t) = argmin{g̃(y; t) | y ∈
Y }, for any y ∈ Y such that λ ≤ β < 1, by applying [142, Theorem 4.1.13,
inequality 4.1.17], we have:

0 ≤ ω(λ) ≤ g̃(y; t)− g̃(y∗(t); t) ≤ ω∗(λ).

By (9.1.3), these inequalities are equivalent to (9.1.5). It follows from the
optimality condition (9.1.1) that c + AT y = t∇F (x∗(y; t)). Hence, by [142,
Theorem 4.2.4], we have:

(c+AT y)T (u− x∗(y; t)) = t∇F (x∗(y; t))T (u− x∗(y; t)) ≤ tν,

for any u ∈ domF . Since X ⊆ domF , the last inequality implies the first
condition in (9.1.6). Furthermore, from (9.1.2) we have ∇g(y; t) = Ax∗(y; t)− b.
Therefore,

‖Ax∗(y; t)− b‖∗y = t ‖∇g̃(y∗(t); t)‖∗y = tλg̃(·,t)(y) ≤ tβ,

which proves the second inequality in (9.1.6).

Let us recall the optimality condition for the primal-dual problems (SepCOPmax)-
(8.1.1) as: {

0 ∈ c+AT y∗0 −NX(x∗0),
0 = Ax∗0 − b,

∀(x∗0, y∗0) ∈ Rn × Rm, (9.1.7)

INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION METHOD 195

where NX(x) is the normal cone of X at x. Since X∗ is nonempty, the first
inclusion also indicates implicitly that x∗0 ∈ X. Moreover, if x∗0 ∈ X then (9.1.7)
can be expressed equivalently to:

(c+AT y∗0)T (u− x∗0) ≤ 0, ∀u ∈ X.

Now, we define an approximate solution of (SepCOPmax)-(8.1.1) as follows.
Definition 9.1.1. For a given tolerance εp ≥ 0, a point (x̃∗, ỹ∗) ∈ X ×Rm is
said to be an εp-solution of (SepCOPmax)-(8.1.1) if (c+AT ỹ∗)T (u− x̃∗) ≤ εp
for all u ∈ X and ‖Ax̃∗ − b‖∗ỹ∗ ≤ εp.

It is clear that for any point x ∈ int(X), NX(x) = {0}. Furthermore, according
to (9.1.7), the conditions in Definition (9.1.1) are well-defined.

Finally, we note that ν ≥ 1, β < 1 and x∗(y; t) ∈ int(X). By (9.1.6), if we choose
the tolerance εp := νt then (x∗(y; t), y) is an εp-solution of (SepCOPmax)-(8.1.1)
in the sense of Definition 9.1.1. We denote the feasibility gap by F(y; t) :=
‖Ax∗(y; t)− b‖∗y for further references.

9.2 Inexact perturbed path-following decomposi-
tion method

This section presents an inexact perturbed path-following decomposition
algorithm for solving (8.1.1).

Inexact solution of the primal subproblems

First, we define an inexact solution of (8.1.7) by using local norms. For a given
y ∈ Y and t > 0, suppose that we solve approximately (8.1.7) up to a given
accuracy δ̄ ≥ 0. More precisely, we define this approximation as follows.
Definition 9.2.1. For given δ̄ ∈ [0, 1), a vector x̄δ̄(y; t) is said to be a δ̄-
approximate solution of x∗(y; t) if:

‖x̄δ̄(y; t)− x∗(y; t)‖x∗(y;t) ≤ δ̄. (9.2.1)

Associated with x̄δ̄(·), we define the following function:

gδ̄(y; t) := cT x̄δ̄(y; t) + yT (Ax̄δ̄(y; t)− b)− tF (x̄δ̄(y; t)). (9.2.2)

196 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

This function can be considered as an inexact version of g. Next, we introduce
two quantities:

∇gδ̄(y; t) := Ax̄δ̄(y; t)−b, and ∇2gδ̄(y; t) := t−1A∇2F (x̄δ̄(y; t))−1AT . (9.2.3)

Since x∗(y; t) ∈ dom(F), we can choose an appropriate δ̄ ≥ 0 such that x̄δ̄(y; t) ∈
dom(F). Hence, ∇2F (x̄δ̄(y; t)) is positive definite which means that ∇2gδ̄ is
well-defined. Note that ∇gδ̄ and ∇2gδ̄ are not the gradient vector and Hessian
matrix of gδ̄(·; t), respectively. Nevertheless, due to Lemma 9.1.2 and (9.2.1),
we can consider these quantities as an approximate gradient vector and Hessian
matrix of g(·; t), respectively.

Let
g̃δ̄(y; t) := t−1gδ̄(y; t), (9.2.4)

and λ̄ be the inexact Newton decrement of g̃δ which is defined by:

λ̄ = λ̄g̃δ̄(·;t)(y) := |‖∇g̃δ̄(y; t)‖|∗y =
[
∇g̃δ̄(y; t)∇2g̃δ̄(y; t)−1∇g̃δ̄(y; t)

]1/2
. (9.2.5)

Here, we use the norm |‖ · ‖|y to distinguish it from ‖·‖y.

The algorithmic framework

From Lemma 9.1.3 we see that if we can generate a sequence {(yk, tk)}k≥0 such
that λk := λg̃(·,tk)(yk) ≤ β < 1, then:

g(yk; tk) ↑ g∗ = φ∗ and F(yk; tk)→ 0, as tk ↓ 0+.

Therefore, the aim of the algorithm is to generate a sequence {(yk, tk)}k≥0
such that λk ≤ β < 1 and tk ↓ 0+. First, we fix t = t0 > 0 and find a point
y0 ∈ Y such that λg̃(·;t0)(y0) ≤ β. Then we simultaneously update yk and tk
in a path-following manner such that tk ↓ 0+. The algorithmic framework is
presented as follows.

Algorithm 9.2.1.(Inexact-perturbed path-following decomposition framework).
Initialization. Choose an appropriate β ∈ (0, 1) and a tolerance εg > 0. Fix
t = t0 > 0 a priori.
Phase 1. (Determine a starting point y0 ∈ Y such that λg̃(·;t0)(y0) ≤ β).
Choose an initial vector y0,0 ∈ Y .
For j = 0, 1, . . . , jmax, perform the following steps:

1. If λj := λg̃(·;t0)(y0,j) ≤ β then set y0 := y0,j and terminate.

2. Solve (8.1.7) in parallel to obtain an approximation of x∗(y0,j ; t0).

INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION METHOD 197

3. Evaluate ∇gδ̄(y0,j ; t0) and ∇2gδ̄(y0,j ; t0) by (9.2.3).

4. Perform the inexact-perturbed damped Newton step: y0,j+1 := y0,j −
αj∇2gδ̄(y0,j ; t0)−1∇gδ̄(y0,j ; t0), where αj ∈ (0, 1] is a given step size.

Phase 2. (Path-following iterations).
Compute an appropriate value σ ∈ (0, 1).
For k = 0, 1, . . . , kmax, perform the following steps:

1. If tk ≤ εg/ω∗(β) then terminate.

2. Update tk+1 := (1− σ)tk.

3. Solve (8.1.7) in parallel to obtain an approximation of x∗(yk; tk+1).

4. Evaluate the quantities ∇gδ̄(yk; tk+1) and ∇2gδ̄(yk; tk+1) as in (9.1.2).

5. Perform the inexact-perturbed full-step Newton step as yk+1 := yk −
∇2gδ̄(yk; tk+1)−1∇gδ̄(yk; tk+1).

Output. An εg-approximate solution yk of problem (8.1.9), i.e. 0 ≤ g(yk; tk)−
g∗(tk) ≤ εg.
End.

This algorithm is still conceptual. In the following subsections, we shall
discuss each step of this algorithmic framework in detail. We note that
the proposed algorithm provides an εg-approximate solution yk such that
tk ≤ εt := ω∗(β)−1εg. Now, by solving the primal subproblem (8.1.7), we
obtain x∗(yk; tk) as an εp-solution of (SepCOPmax) in the sense of Definition
9.1.1, where εp := νεt. The maximum numbers of iterations jmax and kmax will
be defined in the sequel.

Computing inexact solutions

The condition (9.2.1) can not be used in practice to compute x̄δ̄ since x∗(y; t)
is unknown. We need to show how to compute x̄δ̄ practically such that (9.2.1)
holds.

For the sake of notational simplicity, we abbreviate by x̄δ̄ := x̄δ̄(y; t) and
x∗ := x∗(y; t). The error of the approximate solution x̄δ̄ to x∗ is defined as:

δ(x̄δ̄, x∗) := ‖x̄δ̄(y; t)− x∗(y; t)‖x∗(y;t) . (9.2.6)

The following lemma gives a criterion such that the condition (9.2.1) holds.

198 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

Lemma 9.2.1. Let δ(x̄δ̄, x∗) be defined by (9.2.6) such that δ(x̄δ̄, x∗) < 1.
Then:

0 ≤ tω(δ(x̄δ̄, x∗)) ≤ g(y; t)− gδ̄(y; t) ≤ tω∗(δ(x̄δ̄, x∗)). (9.2.7)

Moreover, if:

Ec
δ̄

:=
∥∥c+AT y − t∇F (x̄δ̄)

∥∥∗
xc
≤ εg :=

[
κν(1 + δ̄)

]−1
δ̄t, (9.2.8)

where κν := ν + 2
√
ν, then x̄δ̄(y; t) satisfies (9.2.1). Consequently, if t ≤

ω∗(β)−1εg and δ̄ < 1 then:

|gδ̄(y; t)− g∗(t)| ≤
[
1 + ω∗(β)−1ω∗(δ̄)

]
εg. (9.2.9)

Proof. It follows from the definitions of g(·, t) and gδ̄(·, t), and (9.1.1) that:

g(y; t)− gδ̄(y; t) = [c+AT y](x∗ − x̄δ̄)− t[F (x∗)− F (x̄δ̄)]

= −t[F (x∗) +∇F (x∗)T (x̄δ̄ − x∗)− F (x̄δ̄)].

Since F is self-concordant, by applying [142, Theorems 4.1.7 and 4.1.8], and
the definition of δ(x̄δ̄, x∗), the above equality implies that:

0 ≤ tω(δ(x̄δ̄, x∗)) ≤ g(y; t)− gδ̄(y; t) ≤ tω∗(δ(x̄δ̄, x∗)),

which is indeed (9.2.7).

Next, by using again (9.1.1) and the definition of Ec
δ̄
we have:

Ec
δ̄

(9.1.1)= t ‖∇F (x̄δ̄)−∇F (x∗)‖∗xc ≥ κ
−1
ν t ‖∇F (x̄δ̄)−∇F (x∗)‖∗x∗ ,

where the last inequality follows from [142, Corollary 4.2.1]. Combining this
inequality and [142, Theorem 4.1.7], we obtain:

δ(x̄δ̄, x∗)2

1 + δ(x̄δ̄, x∗)
≤ [∇F (x̄δ̄)−∇F (x∗)]T (x̄δ̄ − x∗)

≤ ‖∇F (x̄δ̄)−∇F (x∗)‖∗x∗ ‖x̄δ̄ − x
∗‖x∗

≤ t−1κνE
c
δ̄
δ(x̄δ̄, x∗).

Hence, we get:
δ(x̄δ̄, x∗) ≤

[
t− κνEcδ̄

]−1
κνE

c
δ̄
, (9.2.10)

provided that t > κνE
c
δ̄
. Let us define an accuracy εp for the primal subproblem

(8.1.7) as εp := [κν(1 + δ̄)]−1δ̄t ≥ 0. Then it follows from (9.2.10) that if
Ec
δ̄
≤ [κν(1 + δ̄)]−1δ̄t then x̄δ̄(y; t) satisfies (9.2.1). It remains to consider the

distance from gδ to g∗(t) when t is sufficiently small. Suppose that t ≤ ω∗(β)−1εg.
Then, by combining (9.1.5) and (9.2.7) we obtain (9.2.9).

INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION METHOD 199

Remark 9.2.1. Since

Eδ̄ :=
∥∥c+AT y − t∇F (x̄δ̄)

∥∥∗
x̄δ̄
≥ (1− δ̄)

∥∥c+AT y − t∇F (x̄δ̄)
∥∥∗
x∗
,

by the same argument as in the proof of Lemma 9.2.1, we can show that if
Eδ̄ ≤ ε̂p, where ε̂p := δ̄(1−δ̄)t

1+δ̄ then (9.2.1) holds. This condition can be used
instead of (9.2.8) to terminate the algorithm presented in the next section.

Phase 2: The path-following scheme with inexact-perturbed
full-step Newton iterations

Now, we analyze Steps 2-5 in Phase 2 of the algorithmic framework. In the
path-following fashion, we only perform one inexact-perturbed full-step Newton
(IPFNT) iteration for each value of the parameter t. Thus one iteration of this
scheme is specified as follows:{

t+ := t−∆t,
y+ := y −∇2gδ̄(y; t+)−1∇gδ̄(y; t+).

(9.2.11)

Since the Newton method is invariant under linear transformations, by (9.2.2),
the second line of (9.2.11) is equivalent to:

y+ := y −∇2g̃δ̄(y; t+)−1∇g̃δ̄(y; t+). (9.2.12)

For the sake of notational simplicity, we denote all the functions at (y+; t+) and
(y; t+) by the sub-index “+” and “1”, respectively, and at (y; t) without index
in the following analysis. More precisely, we denote by:

λ̄+ := λ̄g̃δ̄(·;t+)(y+), δ+ := ‖x̄δ̄(y+; t+)− x∗(y+; t+)‖x∗(y+;t+) ,

λ̄1 := λ̄g̃δ̄(·;t+)(y), δ1 := ‖x̄δ̄(y; t+)− x∗(y; t+)‖x∗(y;t+) ,

λ̄ := λ̄g̃δ̄(·,t)(y), δ := ‖x̄δ̄(y; t)− x∗(y; t)‖x∗(y;t) ,

(9.2.13)

and by

∆:=‖x̄δ̄(y; t+)−x̄δ̄(y; t)‖x̄δ̄(y;t) and ∆∗ :=‖x∗(y; t+)−x∗(y; t)‖x∗(y;t) . (9.2.14)

Note that the above notation does not cause any confusion since it can be
recognized from the context.

The main estimate

Now, by using the notation in (9.2.13) and (9.2.14), we provide a main estimate
which will be used to analyze the convergence of the algorithm presented in
Subsection 9.2.

200 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

Lemma 9.2.2. Let y ∈ Y be given and t > 0. Let (y+, t+) be a pair generated
by (9.2.11). Suppose that δ1 + 2∆ + λ̄ < 1, δ+ < 1 and ξ := ∆+λ̄

1−δ1−2∆−λ̄ . Then:

λ̄+ ≤ (1− δ+)−1
{
δ+ + δ1 + ξ2 + δ1

[
(1− δ1)−2 + 2(1− δ1)−1] ξ}. (9.2.15)

Moreover, the right-hand side of (9.2.15) is nondecreasing w.r.t. all variables
δ+, δ1, ∆ and λ̄.

In particular, if we set δ+ = 0 and δ1 = 0, i.e. the primal subproblem (8.1.7) is
assumed to be solved exactly, then λ̄+ = λ+, λ̄ = λ and (9.2.15) reduces to:

λ+ ≤ (1− 2∆∗ − λ)−2 (λ+ ∆∗)2
, (9.2.16)

provided that λ+ 2∆∗ < 1.

For clarity of the exposition we move the proof of this lemma to Appendix A.2.

Maximum neighborhood of the central path

The key point of the path-following algorithm is to determine the maximum
neighborhood of the central path (β∗, β∗) ⊆ (0, 1) such that:

For any β ∈ (β∗, β∗), if λ̄ ≤ β then λ̄+ ≤ β.
Now, we analyze the estimate (9.2.15) to find the parameters δ̄ and ∆ such that
the last condition holds.

Suppose that δ̄ ≥ 0 as in Definition 9.2.1. First, we construct the following
parametric cubic polynomial:

Pδ̄(β) := c0(δ̄) + c1(δ̄)β + c2(δ̄)β2 + c3(δ̄)β3, (9.2.17)

where the coefficients are given by:
c0(δ̄) := −2δ̄(1− δ̄)2 ≤ 0,
c1(δ̄) := (1− δ̄)−1[1− 3δ̄ + δ̄4],
c2(δ̄) := δ̄[(1− δ̄)−2 + 2(1− δ̄)−1]− 3 + 2δ̄(1− δ̄),
c3(δ̄) := 1− δ̄ > 0.

Then we define:

p := δ̄[(1−δ̄)−2+2(1−δ̄)−1], q := (1−δ̄)β−2δ̄ and θ := 0.5(
√
p2+4q−p). (9.2.18)

The following theorem provides the conditions such that if λ̄ ≤ β then λ̄+ ≤ β.

INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION METHOD 201

Theorem 9.2.2. Suppose that δ̄ ∈ [0, δ̄max] := [0, 0.043286] is fixed and θ
is defined by (9.2.18). Then the polynomial Pδ̄ defined by (9.2.17) has three
nonnegative real roots 0 ≤ β∗ < β∗ < β3. Moreover, if we choose β ∈ (β∗, β∗)
and compute ∆̄ := θ(1−δ̄−β)−β

1+2θ then ∆̄ > 0 and, for 0 ≤ δ+ ≤ δ̄, 0 ≤ δ1 ≤ δ̄ and
0 ≤ ∆ ≤ ∆̄, the condition λ̄ ≤ β implies λ̄+ ≤ β.

Proof. Let us define ξ̄ := ∆+β
1−δ̄−β−2∆ and:

ϕ(β, δ̄,∆) := (1− δ̄)−1{2δ̄ + ξ̄2 + δ̄[(1− δ̄)−2 + 2(1− δ̄)−1]ξ̄
}
.

By assumption λ̄ ≤ β, it follows from Lemma 9.2.2 that if ϕ(β, δ̄,∆) ≤ β then
λ̄+ ≤ β. This condition holds if:

a) 0 ≤ ξ̄ ≤ (
√
p2 + 4q − p)/2 ≡ θ and

b) 0 ≤ δ̄ ≤ β/(β + 2),

where p and q are defined by (9.2.18). The condition a) is equivalent to
(1 + 2θ)∆ ≤ θ(1− δ̄−β)−β. Because ∆ > 0, we need θ > (1− δ̄−β)−1β. This
is guaranteed if Pδ̄(β) > 0, where Pδ̄ is defined in (9.2.17). By a well-known
characteristic of a cubic polynomial, Pδ̄(β) has three real roots if:

18c0c1c2c3 − 4c32c0 + c22c
2
1 − 4c3c31 − 27c23c20 ≥ 0.

By numerically checking the last condition, we can show that if 0 ≤ δ̄ ≤ δ̄max :=
0.043286 then the three roots satisfy 0 ≤ β∗ < β∗ < β3 and Pδ̄(β) > 0 for all
β ∈ (β∗, β∗). With such values of δ̄ and β we have θ > (1− δ̄ − β)−1β and the
condition b) is also satisfied. Eventually, if we define ∆̄ := θ(1−δ̄−β)−β

1+2θ > 0 and
choose δ̄, β and ∆ such that 0 ≤ δ̄ ≤ δ̄max, β ∈ (β∗, β∗) and 0 ≤ ∆ ≤ ∆̄ then
λ̄ ≤ β implies λ̄+ ≤ β.

Now, we illustrate the variation of the values of β∗, β∗ and ∆̄ w.r.t. δ̄ in Figure
9.1. The left figure shows the values of β∗ (solid) and β∗ (dash) and the right
one plots the value of ∆̄ when β is chosen by β := β∗+β∗

2 (dash) and β := β∗

4
(solid), respectively.

Update rule of the penalty parameter

It remains to quantify the decrement ∆t of the penalty parameter t in (9.2.11).
The following lemma shows how to update t.

202 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

δ
b

β
* (d

a
s
h

)
a

n
d

 β
*(s

o
li
d

)

0 0.01 0.02 0.03 0.04
0

0.02

0.04

0.06

0.08

0.1

δ
b

∆
b

β
*

β
*

∆
b
, r.w.t 0.5(β

*
+β

*
)

∆
b
, w.r.t 0.25β

*

Figure 9.1: The values of β∗, β∗ and ∆̄ varying w.r.t δ̄.

Lemma 9.2.3. Let δ̄ and ∆̄ be defined as in Theorem 9.2.2 and let:

∆̄∗ := 1
2

[
(1− δ̄)∆̄− δ̄ + 1−

√
((1− δ̄)∆̄− δ̄ − 1)2 + 4δ̄

]
. (9.2.19)

Then the penalty parameter t can be decreased linearly, i.e. t+ := (1 − σ)t,
where σ := [

√
ν + ∆̄∗(

√
ν + 1)]−1∆̄∗ ∈ (0, 1).

Proof. It follows from (9.1.1) that c + AT y − t∇F (x∗) = 0 and c + AT y −
t+∇F (x∗1) = 0, where x∗ := x∗(y; t) and x∗1 := x∗(y; t+). Subtracting these
equalities and then using t+ = t − ∆t, we have t+[∇F (x∗1) − ∇F (x∗)] =
∆t∇F (x∗). Using this relation together with [142, Theorem 4.1.7] and
‖∇F (x∗)‖∗x∗ ≤

√
ν (see [142, inequality 4.2.4]), we have:

t+ ‖x∗1 − x∗‖
2
x∗

1 + ‖x∗1 − x∗‖x∗
≤ t+[∇F (x∗1)−∇F (x∗)]T (x∗1 − x∗) = ∆t∇F (x∗)T (x∗1 − x∗)

≤ ∆t ‖∇F (x∗)‖∗x∗ ‖x
∗
1 − x∗‖x∗ ≤ ∆t

√
ν ‖x∗1 − x∗‖x∗ .

By the definition of ∆∗ in (9.2.14), if t > (
√
ν + 1)∆t, then the above inequality

leads to:
∆∗ ≤ ∆̄∗ := t

[
t− (
√
ν + 1)∆t

]−1√
ν∆. (9.2.20)

Therefore,
∆t = t

[√
ν + (

√
ν + 1)∆̄∗

]−1∆̄∗. (9.2.21)
On the other hand, using the definitions of ∆ and δ, we have:

∆ := ‖x̄δ̄1 − x̄δ̄‖x̄δ̄
(A.2.3)
≤ (1− δ)−1

[
‖x̄δ̄1 − x

∗
1‖x∗+ ‖x

∗
1 − x∗‖x∗+ ‖x

∗ − x̄δ̄‖x∗
]

≤ (1− δ)−1 [(1−∆∗)−1δ1 + ∆∗ + δ
]

(9.2.22)

(9.2.20),δ,δ1≤δ̄
≤ (1− δ̄)−1 [(1− ∆̄∗)−1δ̄ + ∆̄∗ + δ̄

]
.

INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION METHOD 203

Now, we need to find a condition such that ∆ ≤ ∆̄, where ∆̄ is given in Theorem
9.2.2. It follows from (9.2.22) that ∆ ≤ ∆̄ if δ̄

1−∆∗ + ∆∗ ≤ (1− δ̄)∆̄− δ̄. The
last condition holds if:

0 ≤ ∆̄∗ ≤ 1
2

[
(1− δ̄)∆̄− δ̄ + 1−

√
((1− δ̄)∆̄− δ̄ − 1)2 + 4δ̄

]
, (9.2.23)

provided that δ̄ ≤ ∆̄
1+∆̄ , due to (9.2.20). Thus, we can fix ∆̄∗ at the upper bound

as defined in (9.2.19). By (9.2.21), the update rule for the penalty parameter t
becomes t+ := t− σt = (1− σ)t where σ := ∆̄∗√

ν+∆̄∗(
√
ν+1) ∈ (0, 1).

Finally, we show that the conditions given in Theorem 9.2.2 and Lemma 9.2.3
are well-defined. Indeed, let us fix δ̄ := 0.01. Then we can compute the values
of β∗ and β∗ as β∗ ≈ 0.021371 < β∗ ≈ 0.356037. Therefore, if we choose
β := β∗

4 ≈ 0.089009 > β∗ then ∆̄ ≈ 0.089012 and ∆̄∗ ≈ 0.067399.

The algorithm and its convergence

Before presenting the algorithm, we need to find a stopping criterion. By using
Lemma A.2.1c. with ∆ instead of δ, we have:

λ ≤ (1− δ)−1(λ̄+ δ), (9.2.24)

provided that δ < 1 and λ̄ ≤ β < 1. Consequently, if λ̄ ≤ (1 − δ̄)β − δ̄ then
λ ≤ β. Let us define ϑ := (1 − δ̄)β − δ̄, where 0 < δ̄ < β/(β + 1). It follows
from Lemma 9.1.3 that if tω∗(ϑ) ≤ εg for a given tolerance εg > 0, then y is an
εg-solution of (8.1.9).

The second phase of the algorithmic framework presented in Subsection 9.2 is
now described in detail as follows.

Algorithm 9.2.2.(Path-following algorithm with IPFNT iterations).
Initialization: Choose δ̄ ∈ [0, δ̄max] and compute β∗ and β∗ as in Theorem
9.2.2.
Phase 1. Apply Algorithm 9.2.3 presented in Subsection 9.2 below to find
y0 ∈ Y such that λg̃δ̄(·;t0)(y0) ≤ β.

Phase 2.
Initialization of Phase 2: Perform the following steps:

1. Given a tolerance εg > 0.

2. Compute ∆̄ as in Theorem 9.2.2. Then, compute ∆̄∗ by (9.2.19).

204 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

3. Compute σ := ∆̄∗√
ν+(
√
ν+1)∆̄∗ and the accuracy factor γ := δ̄

κν(1+δ̄) .

Iteration: For k = 0, 1, · · · , kmax, perform the following steps:

1. If tk ≤ εg
ω∗(ϑ) , where ϑ := (1− δ̄)β − δ̄, then terminate.

2. Compute an accuracy εk := γtk for the primal subproblems.

3. Update tk+1 := (1− σ)tk.

4. Solve approximately (8.1.7) in parallel up to the accuracy εk to obtain
x̄δ̄(yk; tk+1).

5. Compute ∇gδ̄(yk; tk+1) and ∇2gδ̄(yk; tk+1) as in (9.2.3).

6. Update yk+1 as yk+1 := yk −∇2gδ̄(yk; tk+1)−1∇gδ̄(yk; tk+1).

End.

The core steps of Phase 2 in Algorithm 9.2.2 are Steps 4 and 6, where we need
to solve M convex primal subproblems in parallel and computing the IPFNT
direction, respectively. Note that Step 6 requires one to solve a linear equation
system. In addition, the quantity ∇2F (x̄δ̄(yk; tk+1)) can also be computed in
parallel.

The parameter t at Step 3 can be updated adaptively as tk+1 := (1 − σk)tk,
where σk := ∆̄∗

Rδ̄+(Rδ̄+1)∆̄∗ and Rδ̄ := (1 − δ̄)−1[δ̄(1 − δ̄)−1 + ‖∇F (x̄δ̄)‖
∗
x̄δ̄

]
.

The stopping criterion at Step 1 can be replaced by ω∗(ϑk)tk ≤ εg, where
ϑk := (1− δ̄)−1[λg̃δ̄(·;tk)(yk) + δ̄] due to Lemma 9.1.3 and (9.2.24).

Let us define λk+1 := λg̃δ̄(·;tk+1)(yk+1) and λk := λg̃δ̄(·;tk)(yk). Then the local
convergence of Algorithm 9.2.2 is stated in the following theorem.
Theorem 9.2.3. Let {(yk, tk)} be a sequence generated by Algorithm 9.2.2.
Then the number of iterations to obtain an εg-solution of (8.1.9) does not exceed:

kmax :=
⌊
[ln(1− σ)]−1 ln

(εg
t0ω∗(ϑ)

)⌋
+ 1, (9.2.25)

where σ := ∆̄∗√
ν+(
√
ν+1)∆̄∗ ∈ (0, 1) and ϑ := (1− δ̄)β − δ̄ ∈ (0, 1).

Proof. Note that yk is an εg-solution of (8.1.9) if tk ≤ εg
ω∗(ϑ) due to Lemma

9.1.3, where ϑ = (1− δ̄)β − δ̄. Since tk = (1− σ)kt0 due to Step 3, we require
(1− σ)k ≤ εg

t0ω∗(ϑ) . Consequently, we obtain (9.2.25).

INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION METHOD 205

Remark 9.2.4 (The worst-case complexity). Since (1 − σ)−1 = 1 +
∆̄∗√

ν(∆̄∗+1) , we have − ln(1 − σ) ≈ σ = ∆̄∗√
ν(∆̄∗+1) . It follows from Theorem

9.2.3 that the complexity of Algorithm 9.2.2 is O
(√

ν ln t0
εg

)
.

Remark 9.2.5 (Linear convergence). The sequence {tk} linearly converges
to zero with a contraction factor not greater than 1− σ. When λg̃δ̄(·;t)(y) ≤ β,
it follows from (9.1.3) that λgδ̄(·;t)(y) ≤ β

√
t. Thus the sequence of the Newton

decrements {λg(·;tk)(yk)}k of g also converges linearly to zero with a contraction
factor not greater than

√
1− σ.

Remark 9.2.6 (The inexactness of the IPFNT direction). Note that we
can also apply an inexact method to solve the linear system for computing an
IPFNT direction in (9.2.11). For more details of this approach, one can refer
to [211].

Finally, as a consequence of Theorem 9.2.3, the following corollary shows how
to recover the optimality and feasibility of the original primal-dual problems
(SepCOPmax)-(8.1.1).
Corollary 9.2.1. Suppose that (yk; tk) is the output of Algorithm 9.2.2 and
x∗(yk; tk) is the solution of the primal subproblem (8.1.7). Then (x∗(yk; tk), yk)
is an εp-solution of (SepCOPmax)-(8.1.1), where εp := νω∗(β)−1εg.

Phase 1: Finding a starting point

Phase 1 of the algorithmic framework aims at finding y0 ∈ Y such that
λg̃δ̄(·;t)(y

0) ≤ β. In this subsection, we consider an inexact perturbed damped
Newton (IPDNT) method for finding such a point y0.

Inexact perturbed damped Newton iteration

For a given value t = t0 > 0 and a given accuracy δ̄ ≥ 0, let us assume that the
current point y ∈ Y is given, we compute the new point y+ by applying the
IPDNT iteration as follows:

y+ := y − α(y)∇2gδ̄(y, t0)−1∇gδ̄(y, t0), (9.2.26)

where α := α(y) > 0 is the step size which will be chosen appropriately. Note
that since (9.2.26) is invariant under linear transformations, it is equivalent to:

y+ := y − α(y)∇2g̃δ̄(y, t0)−1∇g̃δ̄(y, t0), (9.2.27)

206 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

It follows from (9.1.3) that g̃(·; t0) is standard self-concordant, and by [142,
Theorem 4.1.8], we have:

g̃(y+; t0) ≤ g̃(y, t0) +∇g̃(y, t0)T (y+ − y) + ω∗(‖y+ − y‖y), (9.2.28)

provided that ‖y+ − y‖y < 1. On the other hand, (9.2.7) implies that:

0 ≤ ω(δ(x̄δ̄, x∗)) ≤ g̃(y, t0)− g̃δ̄(y, t0) ≤ ω∗(δ(x̄δ̄, x∗)), (9.2.29)

which bounds the error between g̃(·; t0) and g̃δ̄(·; t0). In order to analyze the
convergence of the IPDNT iteration (9.2.26) we denote by:

δ̂+ := ‖x̄δ̄(y+; t0)− x∗(y+; t0)‖x∗(y+;t0) ,

δ̂ := ‖x̄δ̄(y, t0)− x∗(y, t0)‖x∗(y,t0) , (9.2.30)

λ̄0 := λg̃δ̄(·;t0)(y) = α(y)|‖y+ − y‖|y,

the solution differences of g(·; t0) and gδ̄(·; t0) and the Newton decrement of
g̃δ̄(·; t0), respectively.

Finding the step size

The following lemma provides a formula to update the step size α(y) in (9.2.26).

Lemma 9.2.4. Let 0 < ¯̂
δ < δ̂∗ := β(2 + β + 2

√
β + 1)−1 and η be defined as:

η :=β
[
(1+¯̂

δ)β+
√

(1− ¯̂
δ)2β2−4¯̂

δβ
]−1[

(1−¯̂
δ)β−2¯̂

δ+
√

(1− ¯̂
δ)2β2−4¯̂

δβ
]
. (9.2.31)

Then η ∈ (0, 1). Furthermore, if we choose the step size α(y) as:

α(y) :=
[
2λ̄0(1 + λ̄0)

]−1
[
(1− ¯̂

δ)λ̄0 − 2¯̂
δ +

√
(1− ¯̂

δ)2λ̄2
0 − 4¯̂

δλ̄0

]
, (9.2.32)

then α(y) ∈ (0, 1) and:

g̃δ̄(y+; t0) ≤ g̃δ̄(y, t0)− ω(η). (9.2.33)

As a consequence, if ¯̂
δ = 0 then η = β and α(y) := (1 + λ̄0)−1.

The asymptotic behaviour of the functions η(·) and α(·) w.r.t. ¯̂
δ is plotted in

Figure 9.2 below. We can observe that α depends almost linearly on ¯̂
δ.

INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION METHOD 207

0 0.005 0.01 0.015 0.02

0.05

0.06

0.07

0.08

0.09

δ − values

η
 −

 v
a
lu

e
s

0 0.005 0.01 0.015 0.02

0.47

0.475

0.48

0.485

0.49

0.495

0.5

δ − values

α
 −

 v
a
lu

e
s
 (

w
.r

.t
. λ

0
 =

 1
)

Figure 9.2: The asymptotic behaviour of η and α w.r.t. ¯̂
δ at λ0 = 1 and

β = 0.089009.

Proof. Let p := y+ − y. From (9.2.28) and (9.2.29), we have:

g̃δ̄(y+; t0)
(9.2.29)
≤ g̃(y+; t0)

(9.2.28)
≤ g̃(y, t0) +∇g̃(y, t0)T (y+ − y) + ω∗(‖y+ − y‖y)

(9.2.29)
≤ g̃δ̄(y, t0) +∇g̃(y, t0)T (y+ − y) + ω∗(‖y+ − y‖y) + ω∗(δ̂)

= g̃δ̄(y, t0)+∇g̃δ̄(y, t0)Tp+
[
∇g̃(y, t0)−∇g̃δ̄(y, t0)

]T
p+ω∗(‖p‖y)+ω∗(δ̂)

(9.2.26)
≤ g̃δ̄(y, t0)−αλ̄2

0+‖∇g̃(y, t0)−∇g̃δ̄(y, t0)‖∗y ‖p‖y+ω∗(‖p‖y)+ω∗(δ̂)

(A.2.2)
≤ g̃δ̄(y, t0)− αλ̄2

0 + δ̂ ‖p‖y + ω∗(‖p‖y) + ω∗(δ̂). (9.2.34)

Furthermore, from (A.2.4) and the definition of ∇2g̃ and ∇2g̃δ̄, we have:

(1− δ̂)∇2g̃δ̄(y, t0) � ∇2g̃(y, t0) � (1− δ̂)−2∇2g̃δ̄(y, t0).

These inequalities imply (1− δ̂)|‖p‖|y ≤ ‖p‖y ≤ (1− δ̂)−1|‖p‖|y. Combining the
previous inequalities, (9.2.27) and the definition of λ̄0 in (9.2.30) we get:

α(1− δ̂)λ̄0 ≤ ‖p‖y ≤ α(1− δ̂)−1λ̄0.

Let us assume that αλ̄0 + δ̂ < 1. By substituting the second inequality into
(9.2.34) and observing that the right hand side of (9.2.34) is nondecreasing w.r.t.
‖p‖y, we obtain:

g̃δ̄(y+; t0)≤ g̃δ̄(y, t0)−αλ̄2
0+(1−δ̂)−1αλ̄δ̂+ω∗

(
(1−δ̂)−1αλ̄0

)
+ω∗(δ̂). (9.2.35)

208 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

Now, let us simplify the last four terms of (9.2.35) which we denote by [·][1] as
follows:

[·][1] := −αλ̄2
0 + (1− δ̂)−1αλ̄0δ̂ + ω∗

(
(1− δ̂)−1αλ̄0

)
+ ω∗(δ̂)

= −αλ̄2
0 − (αλ̄0 + δ̂)− ln

[
1− (αλ̄0 + δ̂)

]
(9.2.36)

= −αλ̄2
0 + ω∗(αλ̄0 + δ̂).

Suppose that we can choose η > 0 such that αλ̄2
0 − ω∗(αλ̄0 + δ̂) = ω(η). This

condition leads to αλ̄2
0 = (αλ̄0 + δ̂)

[
α(λ̄0 + λ̄0) + δ̂

]
which is equivalent to:

α =
[
2λ̄0(1 + λ̄0)

]−1
[
(1− δ̂)λ̄0 − 2δ̂ +

√
(1− δ̂)2λ̄2

0 − 4δ̂λ̄0

]
, (9.2.37)

provided that 0 ≤ δ̂ < ¯̂
δ := 2+λ̄0−2

√
1+λ̄0

λ̄0
. Consequently, we deduce:

η = λ̄0

[
(1+δ̂)λ̄0+

√
(1− δ̂)2λ̄2

0 − 4δ̂λ̄0

]−1[
(1−δ̂)λ̄0−2δ̂+

√
(1− δ̂)2λ̄2

0 − 4δ̂λ̄0

]
.

We assume that λ̄0 ≥ β for a given β ∈ (0, 1). Let us fix ¯̂
δ such that:

0 < ¯̂
δ < δ̂∗ := β−1[2 + β − 2

√
1 + β

]
=
[
2 + β + 2

√
1 + β

]−1
β.

If we choose the step size α(y) as in (9.2.32) for the IPDNT iteration (9.2.26)
then we obtain (9.2.33) with η defined by (9.2.31).

Finally, we estimate the constant η for the case β ≈ 0.089009. We first obtain
δ̂∗ ≈ 0.021314. Let ¯̂

δ := 1
2 δ̂
∗ ≈ 0.010657. Then we get η ≈ 0.075496 and

ω(η) ≈ 0.003002.

The algorithm and its worst-case complexity

In summary, the algorithm for finding y0 ∈ Y is presented in detail as follows.

Algorithm 9.2.3.(Phase 1: Finding a starting point y0 ∈ Y).
Initialization: Perform the following steps:

1. Select β ∈ (β∗, β∗) and t0 > 0 as desired (e.g. β = 1
4β
∗ ≈ 0.089009).

2. Take an arbitrary point y0,0 ∈ Y .

INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION METHOD 209

3. Compute δ̂∗ := β[2 + β + 2
√

1 + β]−1 and fix ¯̂
δ ∈ (0, δ̂∗) (e.g. ¯̂

δ = 0.5δ̂∗).

4. Compute an accuracy ε0 := t0
¯̂
δ

κν(1+¯̂
δ)
.

Iteration: For j = 0, 1, · · · , jmax, perform the following steps:

1. Solve approximately (8.1.7) in parallel up to the accuracy ε0 to obtain
x̄δ̄(y0,j ; t0).

2. Compute λ̄j := λ̄g̃δ̄(·;t0)(y0,j) .

3. If λ̄j ≤ β then set y0 := y0,j and terminate.

4. Update y0,j+1 as:

y0,j+1 := y0,j − αj∇2gδ̄(y0,j , t0)−1∇gδ̄(y0,j , t0),

where

αj :=
[
2λ̄j(1 + λ̄j)

]−1
[
(1− ¯̂

δ)λ̄j − 2¯̂
δ +

√
(1− ¯̂

δ)2λ̄2
j − 4¯̂

δλ̄j

]
∈ (0, 1).

End.

The convergence of this algorithm is stated in the following theorem.
Theorem 9.2.7. The number of iterations required in Algorithm 9.2.3 does
not exceed:

jmax :=
⌊
[t0ω(η)]−1[gδ̄(y0,0, t0)− g∗(t0) + ω∗(¯̂

δ)
]⌋

+ 1, (9.2.38)

where g∗(t0) = min
y∈Y

g(y, t0) and η is given by (9.2.31).

Proof. Summing up (9.2.33) from j = 0 to j = k and then using (9.2.29)
we have 0 ≤ g̃(y0,k, t0) − g̃∗(t0) ≤ g̃δ̄(y0,k, t0) + ω∗(¯̂

δ) − g̃∗(t0) ≤ g̃δ̄(y0,0, t0) +
ω∗(¯̂

δ)− g̃∗(t0)− kω(η). This inequality together with (9.1.3) and (9.2.4) imply:

j ≤ [t0ω(η)]−1[gδ̄(y0,0, t0)− g∗(t0) + ω∗(¯̂
δ)
]
.

Hence, the maximum iteration number in Algorithm 9.2.3 does not exceed jmax
defined by (9.2.38).

Since g∗(t0) is unknown, the constant jmax in (9.2.38) only gives an upper
bound for Algorithm 9.2.3. However, in this algorithm, we do not use jmax as a
stopping criterion.

210 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

9.3 Exact path-following decomposition algorithm

In Algorithm 6.1.7, if we set δ̄ = 0, then this algorithm reduces to the ones
considered in [113, 135, 171, 218, 219] as a special case. Note that, in [113,
135, 171, 218, 219], the primal subproblem (8.1.7) is assumed to be solved
exactly so that the family {g(·; t)}t>0 of the smoothed dual functions is strongly
self-concordant due to the Legendre transformation. Consequently, the standard
theory of interior point methods in [146] can be applied to minimize this
function. In contrast to those methods, in this section we analyze directly the
path-following iterations to select appropriate parameters for implementation.
Moreover, the radius of the neighbourhood of the central path in Algorithm
9.3.1 below is (3−

√
5)/2 ≈ 0.381966 compared to the one, 2−

√
3 ≈ 0.267949,

in the mentioned papers.

The exact path-following iteration

Let us assume that the primal subproblem (8.1.7) is solved exactly, i.e. δ̄ = 0 in
Definition 9.2.1. Then, we have x̄δ̄ ≡ x∗ and δ(x̄δ̄, x∗) = 0 for all y ∈ Y and t > 0.
Moreover, it follows from (9.2.20) that ∆ = ∆∗ = ‖x∗(y; t+)− x∗(y; t)‖x∗(y;t).
We consider one step of the path-following scheme with exact full-step Newton
iterations:{

t+ := t−∆t, ∆t > 0,
y+ := y −∇2g(y; t+)−1∇g(y; t+) ≡ y −∇2g̃(y; t+)−1∇g̃(y; t+).

(9.3.1)

For the sake of notational simplicity, we denote by λ̃ := λg̃(·;t)(y), λ̃1 :=
λg̃(·,t+)(y) and λ̃+ := λg̃(·;t+)(y+). It follows from (9.2.16) of Lemma 9.2.2 that:

λ̃+ ≤
(
1− 2∆∗ − λ̃

)−2(
λ̃+ ∆∗

)2
. (9.3.2)

Now, we fix β ∈ (0, 1) and assume that λ̃ ≤ β. We need to find a condition on ∆
such that λ̃+ ≤ β. Indeed, since the right-hand side of (9.3.2) is nondecreasing
w.r.t. λ̃, it implies that λ̃+ ≤ (1−2∆∗−β)−2(∆∗+β)2. Thus if ∆∗+β

1−2∆∗−β ≤
√
β

then λ̃+ ≤ β. The last condition leads to:

0 ≤ ∆∗ ≤ ∆̄∗ := (1 + 2
√
β)−1

√
β(1−

√
β − β), (9.3.3)

provided that:
0 < β < β∗ := (3−

√
5)/2 ≈ 0.381966. (9.3.4)

EXACT PATH-FOLLOWING DECOMPOSITION ALGORITHM 211

In particular, if we choose β = β∗

4 ≈ 0.095492 then ∆̄∗ ≈ 0.113729. Since
∆ ≡ ∆∗, according to (9.2.21) and (9.3.1), we can update t as:

t+ := (1− σ)t, where σ :=
[√
ν + (

√
ν + 1)∆̄∗

]−1∆̄∗ ∈ (0, 1). (9.3.5)

The algorithm and its convergence

The exact variant of Algorithms 9.2.2 and 9.2.3 is presented in detail as follows.

Algorithm 9.3.1.(Path-following algorithm with exact Newton iterations).
Initialization: Given a tolerance εg > 0 and choose an initial value t0 > 0.
Fix a constant β ∈ (0, β∗), where β∗ = 3−

√
5

2 ≈ 0.381966. Then, compute:

∆̄∗ :=
√
β(1−

√
β − β)

1 + 2
√
β

and σ := ∆̄∗
√
ν + (

√
ν + 1)∆̄∗

.

Phase 1. (Finding a starting point).
Choose an arbitrary starting point y0,0 ∈ Y .
For j = 0, 1, · · · , j̃max, perform the following steps:

1. Solve exactly the primal subproblem (8.1.7) in parallel to obtain
x∗(y0,j ; t0).

2. Evaluate ∇g(y0,j ; t0) and ∇2g(y0,j , t0) as in (9.1.2). Then compute the
Newton decrement λ̃j = λg̃(·;t0)(y0,j).

3. If λ̃j ≤ β then set y0 := y0,j and terminate.

4. Update y0,j+1 as:

y0,j+1 := y0,j − (1 + λ̃j)−1∇2g(y0,j , t0)−1∇g(y0,j , t0).

Phase 2. (Path-following iterations).
For k = 0, 1, · · · , k̃max, perform the following steps:

1. If tk ≤ εg
ω∗(β) then terminate.

2. Update tk as tk+1 := (1− σ)tk.

3. Solve exactly the primal subproblem (8.1.7) in parallel to obtain
x∗(yk; tk+1).

4. Evaluate ∇g(yk; tk+1) and ∇2g(yk; tk+1) as in (9.1.2).

212 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

5. Update yk+1 as:

yk+1 := yk + ∆yk = yk −∇2g(yk; tk+1)−1∇g(yk; tk+1).

End.

Since g̃(·; t0) is standard self-concordant due to Lemma 9.1.1. By [142, Theorem
4.1.12], the number of iterations required in Phase 1 does not exceed:

j̃max :=
⌊[
g̃(y0,0; t0)−g̃∗(t0)

]
ω(β)−1

⌋
+1 =

⌊
[g(y0,0; t0)−g∗(t0)][t0ω(β)]−1

⌋
+1.

The convergence of Phase 2 in Algorithm 9.3.1 is stated in the following theorem.
Theorem 9.3.1. The maximum number of iterations needed in Phase 2 of
Algorithm 9.3.1 to obtain an εg - solution yk̃ of (8.1.9) does not exceed:

k̃max :=
⌊

ln
(t0ω∗(β)

εg

)[
ln
(

1 + ∆̄∗
√
ν(∆̄∗ + 1)

)]−1
⌋

+ 1, (9.3.6)

where ∆̄∗ is defined by (9.3.3).

Proof. From Step 2 of Algorithm 9.3.1, we have tk = (1 − σ)kt0. Hence, if
tk ≤ εg

ω∗(β) then k ≥ ln
(
ω∗(β)t0
εg

)
[ln(1− σ)−1]−1. However, since (1− σ)−1 =

1 + ∆̄∗√
ν(∆̄∗+1) , it implies from the previous relation that:

k ≥ ln
(
ω∗(β)t0
εg

)
ln
(

1 + ∆̄∗
√
ν(∆̄∗ + 1)

)−1

,

which leads to (9.3.6).

Remark 9.3.2 (The worst-case complexity). Since ln
(

1 + ∆̄∗√
ν(∆̄∗+1)

)
≈

∆̄∗√
ν(∆̄∗+1) , the worst-case complexity of Algorithm 9.3.1 is O

(√
ν ln

(
t0
εg

))
which

is similar to Algorithm 9.2.2.
Remark 9.3.3 (Damped Newton iteration). Note that, at Step 5 of
Algorithm 9.3.1, we can use a damped Newton iteration:

yk+1 := yk − αk∇2g(yk; tk+1)−1∇g(yk, tk+1),

instead of the full-step Newton iteration, where αk = (1 + λg̃(·;tk+1)(yk))−1. In
this case, with the same argument as before, we can compute β∗ = 0.5 and
∆∗ =

√
0.5β−β

1+
√

0.5β
.

DISCUSSION ON IMPLEMENTATION 213

9.4 Discussion on implementation

In this section, we further discuss the implementation issues of the proposed
algorithms.

Handling nonlinear objective function and local equality con-
straints

If the objective function φi in (SepCOPmax) is nonlinear, concave and its
epigraph is endowed with a self-concordant log-barrier for some i ∈ {1, · · · ,M}
then we propose to use a slack variable to move the objective function into
the constraints and reformulate it as an optimization problem with linear
objective function. By elimination of variables, it is not difficult to show that
the optimality condition of the resulting problem collapses to the optimality
condition of the original problem, i.e.:

∇φi(xi) +ATi y − t∇Fi(xi) = 0.

The algorithms developed in the previous sections can be applied to solve such
a problem without moving the nonlinear objective function into the constraints.

We also note that, in Algorithms 9.2.2 and 9.2.3, we need to solve approximately
the primal subproblems in (8.1.7) up to a desired accuracy. Instead of solving
directly these primal subproblems, we can treat them from the optimality
condition (9.1.1). Since the objective function associated with this optimality
condition is self-concordant, Newton-type methods can be applied to solve such
a problem, see, e.g. [30, 142].

If local equality constraints Eixi = fi are considered in (SepCOPmax) for some
i ∈ {1, · · · ,M}, then the KKT conditions of the primal subproblem i become:{

ci +ATi y + ETi zi − t∇Fi(xi) = 0,
Eixi − fi = 0.

(9.4.1)

Instead of the full KKT system (9.4.1), we consider a reduced KKT condition
as follows:

ZTi (ci +ATi y)− tZTi ∇Fi(Zixzi +R−Ti fi) = 0.

Here, (Qi, Ri) is a QR-factorization of ETi and Qi = [Yi, Zi] is a basis of the
range space and the null space of ETi , respectively. Due to the invariance of
the norm ‖·‖x∗ , we can show that ‖x̄δ̄ − x∗‖x∗ =

∥∥x̄z
δ̄
− xz∗

∥∥
xz∗

. Therefore, the
condition (9.2.1) coincides with

∥∥x̄z
δ̄
− xz∗

∥∥
xz∗
≤ δ̄. However, the last condition

214 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

is satisfied if:∥∥ZTi (ci +ATi y)− tZTi ∇Fi(Zixzi +R−Ti fi)
∥∥∗
xzc
i

≤ εi(t), i = 1, · · · ,M.

Note that the QR-factorization of ETi is only computed once, a priori.

Computing the inexact perturbed Newton direction

Regarding the Newton direction in Algorithms 9.2.2 and 9.2.3, one has to solve
the linear system:

∇2gδ̄(yk; t)∆yk = −∇gδ̄(yk; t). (9.4.2)
Here, the gradient vector ∇gδ̄ is computed as:

∇gδ̄(yk; t) = Ax̄δ̄(yk; t)− b =
M∑
i=1

(Aix̄i(yk; t)− bi) := hk,

and the Hessian matrix ∇2gδ̄(yk; t) is obtained from:

∇2gδ̄(yk; t) = t−1
M∑
i=1

Ai∇2Fi(x̄i(yk; t))−1ATi :=
M∑
i=1

Gki .

Note that each block Gki := t−1Ai∇2Fi(x̄i(yk; t))−1ATi can be computed in
parallel. Then, the linear system (9.4.2) can be written as:

(M∑
i=1

Gki

)
∆yk = −hk. (9.4.3)

Sine matrix Gk :=
∑M
i=1G

k
i � 0, one can apply either Cholesky-type

factorizations or conjugate gradient (CG) methods to solve (9.4.3). Note that
the CG method only requires matrix-vector operations. More details on parallel
solution of (9.4.3) can be found, e.g., in [135, 218].

9.5 Numerical tests

In this section, we test the algorithms developed in the previous sections by
solving a routing problem with congestion cost. This problem appears in many
areas including telecommunications, network and transportation [101].

Let G = (N ,A) be a network of nN nodes and nA links, and C be a set of nC
commodities to be sent through the network G, where each commodity k ∈ C

NUMERICAL TESTS 215

has a source sk ∈ N , a destination dk ∈ N and a certain amount of demand rk.
The optimization model of the routing problem with congestion (RPC) can be
formulated as follows (see, e.g. [101] for more details):

min
uijk,vij

∑
k∈C

∑
(i,j)∈A cijuijk +

∑
(i,j)∈A wijgij(vij)

s.t.
∑
j:(i,j)∈A uijk −

∑
j:(j,i)∈A ujik =


rk if i = sk,

−rk if i = dk,

0 otherwise,∑
k∈C uijk − vij = bij , (i, j) ∈ A,

uijk ≥ 0, vij ≥ 0, (i, j) ∈ A,

(9.5.1)

where wij ≥ 0 is the weighting of the additional cost function gij for (i, j) ∈ A.

In this example we assume that the additional cost function gij is given by either
a) gij(vij) = − ln(vij), the logarithmic function or b) gij(vij) = vij ln(vij), the
entropy function. It was shown in [142] that the epigraph of gij possesses a
standard self-concordant barrier a) Fij(vij , sij) = − ln vij − ln(ln vij + sij) or
b) Fij(vij , sij) = − ln vij − ln(sij − vij ln vij), respectively.

By using slack variables sij , we can move the nonlinear terms of the objective
function to the constraints. The objective function of the resulting problem
becomes:

f(u, v, s) :=
∑
k∈C

∑
(i,j)∈A

cijuijk +
∑

(i,j)∈A

wijsij , (9.5.2)

with additional constraints gij(vij) ≤ sij , (i, j) ∈ A. It is clear that problem
(9.5.1) is separably convex. Let:

Xij :=
{
vij≥0,

∑
k∈C

uijk−vij=bij , gij(vij)≤sij , (i, j) ∈ A, k ∈ C
}
, (i, j) ∈ A.

(9.5.3)
Then problem (9.5.1) can be reformulated in the form of (SepCOPmax) with
linear objective function (9.5.2) and the local constraint set (9.5.3). Moreover,
the resulting problem has M := nA components, n := nCnA + 2nA variables
including uijk, vij and sij ; and m := nCnN coupling constraints. Each primal
subproblem (8.1.7) has ni := nC + 2 variables and one local linear equality
constraint.

The aim is to compare the effect of the inexactness on the performance of the
algorithms. We consider two variants of Algorithm 9.2.2, where we set δ̄ = 0.5δ̄∗
and δ̄ = 0.25δ̄∗ in Phase 1 and δ̄ = 0.01 and δ̄ = 0.005 in Phase 2, respectively.
We denote these variants by A1-v1 and A1-v2, respectively. For Algorithm
9.3.1, we also consider two cases. In the first case we set the tolerance of the
primal subproblems to εp = 10−6, and the second one is 10−10 to which we

216 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

will refer to as A3-v1 and A3-v2, respectively. All variants are terminated with
the same tolerance εd = 10−4. The initial penalty parameter value is set to
t0 := 0.25.

We benchmarked four variants with performance profiles as in the previous
chapters. All the algorithms were implemented in C++ running on an
Intel® Core TM2, Quad-Core Processor Q6600 (2.4GHz) PC Desktop with 3Gb
RAM and were paralellized by using OpenMP. The input data is generated
randomly, where the nodes of the network are generated in a rectangle
[0, 100] × [0, 300], the demand rk is in [50, 500], the weighting vector w is
set to 10, the congestion bij is in [10, 100] and the linear cost cij is the Euclidean
length of the link (i, j) ∈ A. The nonlinear cost function gij is chosen randomly
between two functions in a) and b) defined above with the same probability.

We tested the algorithms on a collection of 108 random problems. The size of
these problems varies from M = 6 to 14, 280 components, n = 84 to 77, 142
variables and m = 15 to 500 coupling constraints. The performance profiles of
the four algorithms in terms of computational time are shown in Figure 9.3,
where the x-axis is the factor τ (not more than 2τ -times worse than the best
one) and the y-axis is the probability function values ρs(τ) (problems ratio).

As we can see from Figure 9.3 that Algorithm 9.2.2 performs better than
Algorithm 9.3.1 both in the total computational time and the time for solving
the primal subproblems. This provides an evidence on the effect of the
inexactness on the performance of the algorithm. We also observed that the
numbers of iterations for solving the master problem in Phase 1 of all variants
are similar, while they are different in Phase 2. However, since Phase 2 is
performed when the approximate point is in the quadratic convergence region,
it requires few iterations toward the desired approximate solution. Therefore,
the computational time of Phase 1 dominates Phase 2. We notice that, in this
particular example, the structure of the master problem is almost dense and we
did not use any sparse linear algebra solver.

We also compared the total number of iterations for solving the primal
subproblems in Figure 9.4. It shows that Algorithm 9.2.2 is superior to
Algorithm 9.3.1 in terms of iteration number, although the accuracy of solving
the primal subproblem in Algorithm 9.3.1 is only set to 10−6 which is not exact
as theoretically required. This performance profile also reveals the effect of the
inexactness on the number of iterations. In our numerical results, the inexact
version A1-v1 saves 22% (resp. 23%) of the total number of iterations to solve
the primal subproblems compared to A3-v1 (resp. A3-v2); while the variant
A1-v2 saves 20% (reps. 21%) compared to A3-v1 (resp. A3-v2).

CONCLUSION 217

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total CPU time of the whole algorithm

A1−v1

A1−v2

A3−v1

A3−v2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total CPU time for solving primal subproblems

A1−v1

A1−v2

A3−v1

A3−v2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

CPU time of Phase 1

A1−v1

A1−v2

A3−v1

A3−v2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

CPU time of Phase 2

A1−v1

A1−v2

A3−v1

A3−v2

Figure 9.3: The performance profiles of the four variants in terms of
computational time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Not more than 2
τ
−times worse than the best one

P
ro

b
le

m
s
 r

a
ti
o

Total iteration number for solving primal subproblems

A1−v1

A1−v2

A3−v1

A3−v2

Figure 9.4: The performance profile of the four variants in terms of iteration
number.

9.6 Conclusion

We have developed a two-phase interior point decomposition algorithm for
solving some classes of separable convex optimization problems. A main

218 AN INEXACT PERTURBED PATH-FOLLOWING DECOMPOSITION ALGORITHM

assumption imposed on the problem is that the objective function is self-
concordant or compatible with the feasible set [146]. This requirement fits very
well in some classes of convex programming problems such as conic programming,
monotropic programming and network optimization problems. The proposed
method possesses two key features. First, we have allowed the algorithm to
solve the primal subproblems inexactly which leads to the inexactness in the
gradient and Hessian of the smoothed dual function. Second, the parameters
of the algorithm have appropriately been chosen via convergence analysis that
allows us to control them in implementations. The worst-case complexity of the
algorithm has been estimated and is similar to the one in standard interior-point
decomposition methods. Without the inexactness, this algorithm collapses to
an exact interior-point methods which is similar to several variants studied in
the literature, see e.g. [113, 131, 135, 171, 218, 220] but still possesses some
advantages compared to those. Numerical tests on a network routing problem
with congestion have shown the efficiency of the methods compared with existing
algorithms.

Chapter 10

Application to separable
nonconvex optimization

The aim of this chapter is to design an optimization algorithm for solving
separable nonconvex optimization problems of the form (SepNCOP) which can
be implemented in a parallel or distributed manner. Unfortunately, due to
nonconvexity, the strong duality condition in the Lagrangian duality framework
is no longer preserved in this setting. The dual decomposition approach in
the previous chapters can not be applied. Besides, conventional optimization
methods such as SQP-type and interior-point algorithms usually require some
global computation procedures such as evaluations of the objective function
and constraints or globalization. These requirements are not suitable in a
distributed implementation. In this chapter, we combine the sequential convex
programming (SCP) framework developed in Part I and the algorithms proposed
in the previous chapters to build a two-level decomposition algorithm for solving
(SepNCOP). The SCP framework proposed in this chapter can be considered
as a combination of the methods proposed in [141, 143], see also [189].

Contribution of Chapter 10. The contribution of this chapter is as follows:

a) We first propose a new sequential convex programming (SCP) scheme for
solving separable nonconvex (possibly nonsmooth) optimization problems
of the form (SepNCOP).

b) Then, we combine this SCP scheme and Algorithm 7.6.1 to obtain a
two-level decomposition algorithm for solving (SepNCOP) and show the

219

220 APPLICATION TO SEPARABLE NONCONVEX OPTIMIZATION

convergence of this algorithm.

Outline of Chapter 10. This chapter consists of the following sections. In
Section 10.1, we provide a sequential convex programming scheme to tackle
problem (SepNCOP) and prove its global convergence. Section 10.2 presents a
two-level decomposition algorithm for solving (SepNCOP). Section 10.3 deals
with a numerical example to verify the proposed algorithm. We end this chapter
by giving some conclusion.

10.1 Sequential convex programming approach for
separable nonconvex optimization

Let us recall the separable nonconvex optimization problem defined by
(SepNCOP) in this chapter for further references:

φ∗ :=


min
x∈Rn

φ(x) :=
M∑
i=1

[gi(xi) + hi(Fi(xi))]

s.t.
M∑
i=1

(Aixi − bi) = 0,

xi ∈ Xi, i = 1, · · · ,M,

(SepNCOP)

where xi, Ai and bi are defined as in (SepCOP) for i = 1, · · · ,M . The function
gi : Rni → R is assumed to be proper, lower semicontinuous, convex and
possibly smooth, while hi : Rmi → R is proper, lower semicontinuous and
convex but not necessarily smooth. The inner function Fi : Rni → Rmi is
continuously differentiable on its domain for i = 1, · · · ,M . We note that the
functions gi and hi used in this chapter are different from the ones in the
previous chapters although we use the same notation.

Optimality condition

Let us denote by g :=
∑m
i=1 gi, h :=

∑M
i=1 hi, F := (FT1 , · · · , FTi)T , X :=

X1 × · · · ×XM and Ω := {x ∈ X | Ax− b = 0}. The optimality condition for
problem (SepNCOP) can be expressed as:

0 ∈ ∂g(x∗) + F ′(x∗)T∂h(F (x∗)) +NΩ(x∗), (10.1.1)

where NΩ(x) is the normal cone of the convex set Ω at x, ∂g(·) and ∂h(·) are the
subdifferential of g and h at (·), respectively, and F ′ is the Jacobian mapping

SCP APPROACH FOR SEPARABLE NONCONVEX OPTIMIZATION 221

of F . The condition (10.1.1) can be written equivalently as:

∂h(F (x∗)) ∩
{
v | − F ′(x∗)T v ∈ ∂g(x∗) +NΩ(x∗)

}
6= ∅. (10.1.2)

A point x∗ satisfying the condition (10.1.1) or (10.1.2) is called a stationary
point. We denote by Ω∗ the set of stationary points of (SepNCOP).

Instead of (10.1.1), we consider an approximate optimality condition for
(SepNCOP) as follows:

[ξg + F ′(x̃∗)T ξh]T (u− x̃∗) ≥ −ε, ∀u ∈ Ω, (10.1.3)

where ε ≥ 0 is a given tolerance, ξg ∈ ∂g(x̃∗) and ξh ∈ ∂h(F (x̃∗)) are
subgradients of g at x̃∗ and of h(F (·) at F (x̃∗), respectively. In this case
x̃∗ is called an ε-approximate stationary point of (SepNCOP).

Sequential convex programming scheme

Let D be a closed convex set in Rn with nonempty interior that contains Ω.
We make the following assumptions:
Asumption A.10.1.12. The function g is convex in D. The function h is
convex and Lh-Lipschitz continuous in Rm, i.e.:

|h(u)− h(v)| ≤ Lh ‖u− v‖ , ∀u, v ∈ Rm.

The function F is differentiable in D and its Jacobian mapping is LF ′-Lipschitz
continuous in D, i.e.:

‖F ′(x)− F ′(x̂)‖ ≤ LF ′ ‖x− x̂‖ , ∀x, x̂ ∈ D.

As a simple example, the function h(u) := ρ ‖u‖ is convex and Lipschitz
continuous with a Lipschitz constant Lh := ρ on Rm for any ρ > 0.

For a given x̄ in D, let us define the following partial linearization of the objective
function of (SepNCOP):

ψ(x; x̄) := g(x) + h(F (x̄) + F ′(x̄)(x− x̄)). (10.1.4)

Since g and h are convex, ψ(·; x̄) is also convex. If, in addition, g is differentiable
and its gradient is Lg′ -Lipschitz continuous in D then we can consider:

ψL(x; x̄) := g(x̄) +∇g(x̄)T (x− x̄) + h(F (x̄) + F ′(x̄)(x− x̄)). (10.1.5)

We have the following estimates.

222 APPLICATION TO SEPARABLE NONCONVEX OPTIMIZATION

Lemma 10.1.1. Under Assumption A.10.1.12, the function ψ(·; x̄) defined
by (10.1.4) satisfies:

|φ(x)− ψ(x; x̄)| ≤ Mψ

2 ‖x− x̄‖2 , ∀x ∈ D, (10.1.6)

where Mψ := LhLF ′ > 0.

If, in addition, g is differentiable and its gradient is Lg′-Lipschitz continuous in
D then the following estimate holds:

|φ(x)− ψL(x; x̄)| ≤ MψL

2 ‖x− x̄‖2 , ∀x ∈ D, (10.1.7)

where MψL := Lg′ + LhLF ′ > 0.

Proof. Since F ′ is LF ′-Lipschitz continuous, for any x, x̄ ∈ D, we have
‖F (x)− F (x̄)− F ′(x̄)(x− x̄)‖ ≤ 1

2LF ′ ‖x− x̄‖
2. By using this estimate and

the Lipschitz continuity of h, we have:

|φ(x)− ψ(x; x̄)| = |h(F (x))− h(F (x̄) + F ′(x̄)(x− x̄))|

≤ Lh ‖F (x)− F (x̄)− F ′(x̄)(x− x̄)‖

≤ 1
2LhLF

′ ‖x− x̄‖2 ,

which is indeed (10.1.6). Similarly, by the Lipschitz continuity of ∇g we have:

|φ(x)− ψL(x; x̄)| ≤
∣∣g(x)− g(x̄)−∇g(x̄)T (x− x̄)

∣∣
+ |h(F (x))− h(F (x̄) + F ′(x̄)(x− x̄))|

≤ Lg′

2 ‖x− x̄‖
2 + Lh ‖F (x)− F (x̄)− F ′(x̄)(x− x̄)‖

≤ Lg′ + LhLF ′

2 ‖x− x̄‖2 ,

which proves (10.1.7).

For simplicity of presentation, we will use the formula ψ defined by (10.1.4) in
the following SCP scheme. However, the obtained results remain true if we
replace ψ by ψL defined by (10.1.5) with some modification.

Let x̄ ∈ Ω be a given point and β > 0. We define:

q(x; x̄, β) := ψ(x; x̄) + β

2 ‖x− x̄‖
2 and v0(x̄;β) := argmin

x∈Ω
q(x; x̄, β). (10.1.8)

SCP APPROACH FOR SEPARABLE NONCONVEX OPTIMIZATION 223

Since q(·; x̄, β) is strongly convex with a convexity parameter β > 0, v0 is
well-defined and single-valued. The optimality condition for problem (10.1.8)
becomes:

ξTq (u− v0(x̄;β)) ≥ 0, ∀u ∈ Ω,
for some ξq ∈ ∂q(v0(x̄;β); x̄, β), which is necessary and sufficient for optimality.

Now, we define the proximal-gradient mapping of q(·; x̄, β) as:

G0(x̄;β) := β(x̄− v0(x̄;β)), (10.1.9)

We also define the error norm and the optimal value of (10.1.8), respectively as:

e0(x̄;β) :=‖x̄−v0(x̄;β)‖ and ϕ0(x̄;β) :=ψ(v0(x̄;β); x̄)+ β

2 ‖v0(x̄;β)−x̄‖2 .

In practice, we can not solve problem (10.1.8) exactly. We can only solve this
problem up to a given accuracy ε > 0 to get:

vε(x̄;β) :≈ argmin
x∈Ω

q(x; x̄, β), (10.1.10)

as in the sense of the following definition.
Definition 10.1.1. For a given tolerance ε ≥ 0, a point vε is said to be an
ε-solution to (10.1.8) if:

ξTqε(u− vε) ≥ −ε, ∀u ∈ Ω, (10.1.11)

for some ξqε ∈ ∂q(vε; x̄, β), where ∂q(vε; x̄, β) is the subdifferential of q(·; x̄, β)
at vε which can be computed as:

∂q(vε; x̄, β) :=∂g(vε) + F ′(x̄)T∂h(F (x̄) + F ′(x̄)(vε − x̄))+β(vε−x̄).

Alternatively to G0 and e0, we define the approximate proximal-gradient
mapping, the approximate error norm and the approximate optimal value
of (10.1.8), respectively as:

Gε(x̄;β) := β(x̄− vε(x̄;β)), (10.1.12)

and

eε(x̄;β) :=‖x̄−vε(x̄;β)‖ and ϕε(x̄;β) :=ψ(vε(x̄;β); x̄)+ β

2 ‖vε(x̄;β)−x̄‖2 .

The following lemma shows the properties of ‖G0(x̄; ·)‖ and e0(x̄; ·).
Lemma 10.1.2. The function ‖G0(x̄; ·)‖ is nondecreasing in R++ and e0(x̄; ·)
is nonincreasing in R++. Moreover, we have:

φ(x̄)− ϕε(x̄;β) ≥ β

2 eε(x̄;β)2 −
√

2βεeε(x̄;β). (10.1.13)

224 APPLICATION TO SEPARABLE NONCONVEX OPTIMIZATION

Proof. Since the function k(t, x) := ψ(x; x̄) + 1
2t ‖x− x̄‖

2 is convex w.r.t. two
variables x and t. We have η(t) := minx∈Ω k(t, x) is still convex. It is easy
to show that η′(t) = − 1

2t2 e0(x̄; 1/t)2 = − 1
2 ‖G0(x̄; 1/t)‖2. Since η(t) is convex,

η′(t) is nondecreasing in t. This implies that ‖G0(x̄; 1/t)‖ is nonincreasing in t.
Thus ‖G0(x̄;β)‖ is nondecreasing in β and ‖e0(x̄;β)‖ is nonincreasing in β.

From the convexity of η, we have φ(x̄) = η(0) ≥ η(t) + η′(t)(0 − t) = η(t) +
1
2te

2
0(x̄; 1/t). On the other hand, we have ϕ0(x̄;β) = η(1/β). Substituting this

relation into the last inequality we obtain:

φ(x̄)− ϕ0(x̄;β) ≥ β

2 e0(x̄;β)2. (10.1.14)

For simplicity of notation, we denote by v0 := v0(x̄;β) and vε := vε(x̄;β). From
the strong convexity of q(·; x̄, β) and (10.1.11), we can show that:

β

2 ‖vε − v0‖2 ≤ ϕε(x̄;β)− ϕ0(x̄;β) ≤ ε. (10.1.15)

This inequalities imply ‖vε − v0‖ ≤
√

2ε/β. Using the last inequality we
can estimate e0(x̄;β)2 = ‖v0 − x̄‖2 ≥ |eε(x̄;β)− ‖vε − v0‖|2 ≥ eε(x̄;β)2 −
2
√

2ε/βeε(x̄;β) + 2ε/β. Substituting the last inequality into (10.1.14) and then
using (10.1.15) we obtain (10.1.13).

Lemma 10.1.2 shows that if we choose the regularization parameter too large then
‖G0(x̄; ·)‖ may increase while the error e0(x̄; ·) may decrease. This makes a slow
progress towards a stationary point of problem (SepNCOP). For ε sufficiently
small, the inequality (10.1.13) provides a locally approximate quadratic bound
for the objective function φ of (SepNCOP).

The following statement is obvious and can be obtained directly from the
approximate optimality conditions (10.1.11) and (10.1.3).
Lemma 10.1.3. If x̄ is a fixed point of the mapping vε(·;β), i.e. x̄ = vε(x̄;β)
then it is an ε- stationary point of (SepNCOP).

Now, we are ready to prove a main estimate which will be used to show the
global convergence of the SCP scheme described below.
Lemma 10.1.4. Suppose that Assumption A.10.1.12 is satisfied and x̄ ∈ Ω
is a given point and β > 0. Then the point vε(x̄;β) defined by (10.1.8) satisfies
the estimate:

φ(x̄)−φ(vε(x̄;β))≥ 2β−Mψ

2 eε(x̄;β)2−ε= 2β−Mψ

2β2 ‖Gε(x̄;β)‖2∗−ε, (10.1.16)

where Mψ := LhLF ′ .

SCP APPROACH FOR SEPARABLE NONCONVEX OPTIMIZATION 225

Proof. Let us denote by vε := vε(x̄;β). By using (10.1.6), we have:

φ(vε) ≤ g(vε) + h(F (x̄) + F ′(x̄)(vε − x̄)) + Mψ

2 ‖vε − x̄‖2 . (10.1.17)

Now, since g and h are convex, for any v we have:

g(x̄)− g(v) ≥ ξg(v)T (x̄− v),
(10.1.18)

h(F (x̄))− h(F (x̄) + F ′(x̄)(v − x̄)) ≥ ξh(F)TF ′(x̄)(x̄− v),

where ξh(F) ∈ ∂h(F (x̄) + F ′(x̄)(v − x)). Next, we consider the approximate
optimality condition (10.1.11) of (10.1.8). By letting u = x̄ into (10.1.11), then
combining the result and (10.1.18), we obtain:

g(x̄) + h(F (x̄)) ≥ g(vε) + h(F (x̄) + F ′(x̄)(vε − x̄))

+
[
ξg(vε) + F ′(x̄)T ξh(F)

]T (x̄− vε) (10.1.19)

(10.1.11)
≥ g(vε) + h(F (x̄) + F ′(x̄)(vε − x̄)) + β ‖vε − x̄‖2 − ε.

Now, by using the Lipschitz continuity of h and F ′ in Assumption A.10.1.12,
for any v we have:

h(F (v))− h(F (x̄) + F ′(x̄)(v − x̄)) ≤ Lh ‖F (v)− F (x̄)− F ′(x̄)(v − x̄)‖

≤ Mψ

2 ‖v − x̄‖2 .

Substituting this inequality with v = vε into (10.1.19) we obtain:

g(x̄) + h(F (x̄))− g(vε)− h(F (vε)) ≥
2β −Mψ

2 ‖vε − x̄‖2 − ε. (10.1.20)

Finally, by using the definitions of eε(x̄;β), Gε(x̄;β) and φ(·), it follows from
the last inequality that (10.1.16) holds.

Next, we define a sublevel set of φ(·) restricted to Ω as:

Lφ(α) := {x ∈ Ω | φ(x) ≤ α} . (10.1.21)

Then we have the following statement whose the proof can be done similarly as
the proof of [143, Lemma 2.5].
Lemma 10.1.5. Let ε ≥ 0 be given. Suppose that Lφ(φ(x̄))+εB(0, 1) ⊆ int(D).
Then, if β ≥Mψ then vε(x̄;β) ∈ Lφ(φ(x̄)).

226 APPLICATION TO SEPARABLE NONCONVEX OPTIMIZATION

Now, we can describe one step of the SCP algorithm as follows. The SCP
algorithm generates a sequence {xk}k≥0 starting from x0 ∈ Ω by applying the
following scheme:

Scheme S.10.1.1.(SCP scheme).

• Fix a constant µ ∈ (0, 1). Choose x0 ∈ Ω and ε0 > 0 sufficiently small.

• For k = 0, 1, 2, . . . , perform:

xk+1 := vεk(xk;βk), (10.1.22)

where Mψ ≤ βk ≤ β̄ and εk+1 := min
{
εk,

µMψ

2
∥∥xk+1 − xk

∥∥2
}
.

End.
The following theorem shows that the sequence

{
xk
}
k≥0 generated by Scheme

S.10.1.1 converges to a stationary point x∗ ∈ Ω∗.
Theorem 10.1.1. Let {xk}k≥0 be a sequence generated by Scheme S.10.1.1.
Then:

φ(xk)− φ∗ ≥ (1− µ)Mψ

2

∞∑
j=k

eεj (xj ;βj)2 − εk, (10.1.23)

where εk ≥ 0 and φ∗ is the optimal value of (SepNCOP) in Lφ(φ(x0)).
Consequently, one has limk→∞

∥∥xk+1 − xk
∥∥ = 0 and the set of limit points

Ω∗ of {xk} is either empty or nonempty and connected. Suppose further that
the sublevel set Lφ(φ(x0)) is bounded from below. Then every limit point of{
xk
}
is a stationary point of (SepNCOP). Moreover, if Ω∗ is finite then the

whole sequence
{
xk
}
k≥0 converges to a point x∗ in Ω∗.

Proof. From Lemma 10.1.4 and the condition βk ≥Mψ we have:

φ(xk)− φ(xk+1) ≥ 2βk −Mψ

2 eεk(xk;β)2 − εk ≥
Mψ

2 eεk(xk;βk)2 − εk, ∀k ≥ 0.

Summing up this inequality from j = k to j = N ≥ k with noting that
εk = min

{
µMψ

2
∥∥xk − xk−1

∥∥2
, εk−1

}
≤ µMψ

2
∥∥xk − xk−1

∥∥2 for k ≥ 1 we get:

φ(xk)−φ(xN+1)≥
N−1∑
j=k

(1−µ)Mψ

2 eεj(xj ;βj)2+Mψ

2 eεN(xN ;βN)+Mψ

2 eεk(xk;βk)−εk

≥ (1− µ)Mψ

2

N∑
j=k

eεj (xj ;βj)2 − εk + εN+1, (10.1.24)

TWO-LEVEL DECOMPOSITION ALGORITHM 227

which can be rewritten as:

[φ(xk) + εk]− [φ(xN+1) + εN+1] ≥ (1− µ)Mψ

2

N∑
i=k

eεj (xj ;βj)2. (10.1.25)

Since the sequence
{
φ(xk) + εk

}
is bounded from below and the sequence {εk}

does not increase, passing to the limit N →∞ in (10.1.24) we obtain (10.1.23).
Next, we set k = 0 in (10.1.24) and passing to the limit N → ∞ we have∑∞
j=0 eεj (xj ;βj)2 < +∞. Therefore, limk→∞

∥∥xk − xk+1
∥∥ = 0. This limit

implies that the set of limit points of
{
xk
}
k≥0 is either empty or nonempty and

connected.

Since the approximate level set Lφ(φ(x0)) is bounded, by Lemma 10.1.5, we
conclude that the sequence

{
xk
}
k≥0 is bounded. Thus the set of limit points

Ω∗ is nonempty. Next, by passing to the limit through a subsequence and then
combining the result and Lemma 10.1.3 we can easily prove that every limit
point is a stationary point of (SepNCOP). If the set of limit points Ω∗ is finite,
by applying the result [152, Chapt. 28], we obtain the proof of the remaining
statement.

10.2 Two-level decomposition algorithm

Recall that the primal subproblem (10.1.10) in the SCP scheme S.10.1.1 is
convex and separable. In principle, we can apply the algorithms developed in
the previous chapters to obtain a two-level decomposition algorithm for solving
(SepNCOP). In particular, since the objective function of (10.1.10) is strongly
convex with a convexity parameter β > 0, in the following algorithm, we apply
Algorithm 7.6.1 in Chapter 7 to solve (10.1.10).

Problem (10.1.10) can be written explicitly as follows:

min
x

M∑
i=1

[
gi(xi) + hi(Fi(x̄i) + F ′i (x̄i)(xi − x̄i)) + β

2 ‖xi − x̄i‖
2
]

s.t.
M∑
i=1

(Aixi − bi) = 0,

xi ∈ Xi, i = 1, · · · ,M.

(10.2.1)

This problem is in fact in the form of (SepCOP). Therefore, we combine the
SCP scheme S.10.1.1 and Algorithm 7.6.1 to obtain a two-level algorithm for
solving (SepNCOP). In this case, we also assume that the Lipschitz constants
Lh and LF ′ are known a priori. The algorithm is described in detail as follows:

228 APPLICATION TO SEPARABLE NONCONVEX OPTIMIZATION

Algorithm 10.2.1.(Two-level SCP decomposition algorithm).
Initialization: Perform the following steps:

1. Given a tolerance εouter > 0 for the outer loop.

2. Choose positive numbers β̄ > β ≥Mψ := LhLF ′ and µ ∈ (0, 1).

3. For each component i, choose an initial point x0
i ∈ Xi (i = 1, · · · ,M).

4. Select a sufficiently small accuracy value 0 < ε0 < εouter.

Outer iteration: For k = 0, 1, 2, . . . , perform the following steps:

Step 1: Select an appropriate value βk ∈ [β, β̄].

Step 2: (inner iteration). For a given xk := (xk1 , · · · , xkM), apply Algorithm
7.6.1 to solve the separable and strongly convex programming problem
(10.2.1) up to the given accuracy εk to obtain a solution xk+1.

Step 3: If
∥∥xk+1

i − xki
∥∥ ≤ εouter for i = 1, · · · ,M then terminate the outer

loop k.

Step 4: For i = 1, · · · ,M , evaluate the function Fi and its Jacobian
at the new point xk+1

i in parallel. Compute the new accuracy εk+1 :=
min

{
µMψ

2
∥∥xk+1 − xk

∥∥2
, εk

}
.

End.

By strong convexity of (10.2.1), the inner-loop carried out by Algorithm 10.2.1
at Step 2 converges sublinearly with the convergence rate O(1/j2). Therefore,
we can terminate the inner-loop after a certain number of iterations which
can be defined a priori. The convergence of the inner-loop has been proved in
Theorem 7.6.1.

The following theorem shows the convergence of Algorithm 10.2.1 which can be
considered as a consequence of Theorem 10.1.1.
Theorem 10.2.1. Under the assumptions of Theorem 10.1.1, the sequence{
xk
}
k≥0 generated by Algorithm 10.2.1 still satisfies the conclusions of Theorem

10.1.1.

Note that if g is differentiable and its gradient is Lg′ -Lipschitz continuous in D
then we can modify Algorithm 10.2.1 to process this case. The computation of
the accuracy εk in Algorithm 10.2.1 still requires global information, the norm
of the difference of the vectors xk and xk+1.

NUMERICAL TESTS 229

10.3 Numerical tests

In this section, we verify Algorithm 10.2.1 by applying it to solve the following
separable nonconvex optimization problem:

min
x∈Rn

φ(x) :=
n∑
i=1

[
1
2pix

2
i + qixi + ρ

∣∣∣∣12cix2
i + dixi + ei

∣∣∣∣]
s.t.

n∑
i=1

(Aixi − bi) = 0,

0 ≤ xi ≤ 1, i = 1, · · · , n.

(10.3.1)

Here p, q, c, d, e are given vectors in Rn with the components pi, qi, ci, di, ei,
respectively, and pi ≥ 0 for i = 1, . . . , n; A := [A1, . . . , An] ∈ Rm×n, bi ∈ Rm

for i = 1, . . . , n and ρ > 0 are given.

Let us define g(x) :=
∑n
i (1

2pix
2
i + qixi), h(u) := ρ ‖u‖1, F (x) := (1

2c1x
2
1 +

d1x1 + e1, · · · , 1
2cnx

2
n + dnxn + en)T , b :=

∑n
i=1 bi and X := [0, 1]n. Since

pi ≥ 0 for all i = 1, . . . , n, g is convex. It is also easy to check that h
is convex and Lipschitz continuous with a Lipschitz constant Lh := ρ, and
F ′(x) := diag(c1x1 + d1, · · · , cnxn + dn) is also Lipschitz continuous with a
Lipschitz constant LF ′ := max1≤i≤n |ci|. Hence, problem (10.3.1) can be written
in the form (SepNCOP).

We have implemented Algorithm 10.2.1 in C++ running on a 16 cores
Intel ®Xeon 2.7GHz workstation with 12 GB of RAM. The inner loop
at Step 2 of Algorithm 10.2.1 was parallelized by using OpenMP. We
terminated the outer loop of the algorithm if the relative feasibility gap
rfgap :=

∥∥Axk − b∥∥ /max
{∥∥Ax0 − b

∥∥ , 1.0} ≤ 10−3 and either error :=∥∥xk+1 − xk
∥∥ /max

{∥∥xk∥∥ , 1.0} ≤ 10−3 or the quantity:

rfvalkj :=
∣∣φ(xk)− φ(xk−j)

∣∣ /max
{∣∣φ(xk)

∣∣ , 1.0}
does not change significantly after five successive iterations, i.e. rfvalkj ≤ 10−3

for j = 1, . . . , 5. The initial tolerance ε0 for the inner loop was set to ε0 :=
0.5× 10−3, and then was updated by εk+1 :=

{
0.5Mψ

2
∥∥xk+1 − xk

∥∥2
, εk

}
. The

maximum number of iterations in the inner loop was set to jmax := 10, 000.
The parameter βk was fixed at βk := 1.005Mψ. We notice that the primal
subproblems formed from each component of (10.2.1) in this example can be
solved in a closed form.

The data of the problem instances was generated as follows. Vectors d, e, q
and matrix A were generated randomly in [−1, 1]. Vectors c and p were also
generated randomly in [−0.5, 0.5] and [0, 1], respectively. Vector b was computed

230 APPLICATION TO SEPARABLE NONCONVEX OPTIMIZATION

by b := Axt for a given test point xt ∈ [0, 1]n. The penalty parameter ρ was
fixed at ρ := 10.

We have tested Algorithm 10.2.1 for 25 problem instances. The performance
information and results reported by this algorithm are shown in Table 10.1.

Table 10.1: Performance information and results of Algorithm 10.2.1

Pno Size Performance Results
m n oiter iiter time[s] error rfgap objval

#1 50 1000 11 1868 5.31 9.012× 10−3 0.475× 103 3539.450
#2 100 1000 11 2149 9.15 6.775× 10−3 0.586× 103 3469.270
#3 150 1000 11 2749 16.91 4.566× 10−3 0.558× 103 3685.160
#4 200 1000 11 3143 23.82 7.307× 10−3 0.606× 103 3929.740
#5 250 1000 11 3464 30.48 8.298× 10−3 0.619× 103 3940.790
#6 300 1000 11 3852 40.08 5.861× 10−3 0.587× 103 3973.160
#7 350 1000 11 4004 47.76 5.299× 10−3 0.723× 103 4259.940
#8 400 1000 11 4114 54.33 5.174× 10−3 0.731× 103 4486.220
#9 450 1000 11 4711 67.86 5.831× 10−3 0.740× 103 4730.130
#10 500 1000 11 4885 78.33 8.147× 10−3 0.691× 103 4848.320
#11 550 2000 11 4804 226.33 8.743× 10−3 0.672× 103 8324.100
#12 600 2000 11 5159 316.39 5.292× 10−3 0.623× 103 8087.260
#13 650 2000 11 5255 366.47 7.940× 10−3 0.667× 103 8373.030
#14 700 2000 11 5645 402.23 7.805× 10−3 0.707× 103 8976.730
#15 750 2000 11 5898 493.21 5.860× 10−3 0.668× 103 8530.690
#16 800 3000 11 6184 974.17 8.942× 10−3 0.648× 103 12270.300
#17 850 3000 11 6103 788.78 6.926× 10−3 0.674× 103 12361.500
#18 900 3000 11 6214 900.54 6.939× 10−3 0.661× 103 12305.300
#19 950 3000 11 6444 1029.44 7.514× 10−3 0.662× 103 12469.400
#20 1000 3000 11 6666 1076.14 7.629× 10−3 0.714× 103 13007.200
#21 1000 3500 11 6404 1364.64 6.842× 10−3 0.703× 103 14458.000
#22 1000 4000 11 6721 1482.57 10.381× 10−3 0.648× 103 16178.600
#23 1000 4250 11 6847 1317.29 7.160× 10−3 0.615× 103 16349.500
#24 1000 4500 11 6668 1552.98 7.750× 10−3 0.635× 103 17722.600
#25 1000 5000 11 6777 1973.95 7.895× 10−3 0.611× 103 19873.700

Here, the first column is the problem number; oiter is the number of outer
iterations; iiter is the number of average inner iterations in Algorithm 7.6.1;
time[s] is the total of computational time in seconds; two quantities rfgap
and error are defined as above; and objval is the objective values.

CONCLUSION 231

As we can observe from Table 10.1 that the number of outer iterations in
Algorithm 10.2.1 is rather small and does not change when the size of the
problem increases. However, since the algorithm of the inner loop is just a
first-order method, it requires many iterations and the number of iterations
increases significantly when the problem size increases. Note that we can reduce
the number of inner iterations by reducing the accuracy ε0. In contrast, the
number of outer iterations increases accordingly.

10.4 Conclusion

In this chapter, we have presented a two-level decomposition algorithm for
solving a class of separable nonconvex optimization problems. This algorithm
can be considered as a combination of an inexact SCP scheme in the context
of Part I for nonconvex optimization and the decomposition algorithm for
separable and strongly convex optimization, Algorithm 7.6.1, in Chapter 7. We
have proved the global convergence of the SCP outer loop and, consequently, we
have obtained the convergence of the whole algorithm. This algorithm has been
tested via a numerical example. However, the theoretical and numerical results
presented in this chapter are still preliminary due to several mathematical
challenges of nonconvex optimization problems.

Chapter 11

Conclusion

11.1 Conclusion

In this thesis we have integrated two structure-exploiting approaches for solving
nonlinear optimization problems both in the convex and nonconvex case, namely
sequential convex programming and decomposition methods, and extended the
existing state-of-the-art by new algorithms and convergence proofs.

Part I: Sequential Convex Programming (SCP)

In Chapter 2, we have proposed a general adjoint-based predictor-corrector
SCP algorithm and two variants for solving parametric optimization problems
as well as nonlinear optimization problems. We proved the stability of the
tracking error for the online SCP algorithm and the local convergence of the
SCP algorithm. These methods are suitable for nonconvex problems that
possess convex substructures which can be efficiently handled by using convex
optimization techniques. The performance of the algorithms has been validated
by two numerical examples in nonlinear model predictive control as well as
optimal control in Chapter 3. The basic assumptions used in our development
are the strong regularity, the Lipschitz continuity assumption A.2.4.3b) and
the approximation assumption A.2.4.3a) or A.2.4.3’. The strong regularity
concept was introduced by Robinson in [160] and has been widely used in
optimization and nonlinear analysis, while the two last assumptions are needed
in any Newton-type algorithm. As in SQP methods, these assumptions involve
some Lipschitz constants that may be difficult to determine in practice.

233

234 CONCLUSION

In Chapter 4, we have proposed a new algorithm for solving a class of nonconvex
semidefinite programming problems, which can be viewed as a generalization of
the inner convex approximation method [9, 127]. The key idea is to locally
approximate the nonconvex feasible set of the problem by a sequence of
inner positive semidefinite (psd)-convex sets. As a special case, we derived
a new variant of this algorithm which we call a generalized convex-concave
decomposition algorithm. This algorithm covers both the difference of two convex
functions algorithm [156] and the convex-concave procedure [177] in the case of
scalar functions as special cases. The convergence of both algorithms has been
investigated under standard assumptions usually used in nonconvex semidefinite
programming. Both algorithms are easy to implement by using available
semidefinite programming solvers. We have shown that these algorithms are
suitable to treat optimization problems with bilinear matrix inequality (BMI)
constraints. However, the second algorithm depends crucially on the psd-convex-
concave decomposition of the given BMI constraints. In practice, it is important
to exploit the specific structure of the problems and find an appropriate psd-
convex-concave decomposition for this algorithm. The methods developed in
Chapter 4 can be extended to solve general nonlinear semidefinite programming
problems, where either an inner convex approximation or a psd-convex-concave
decomposition of the nonconvex mappings is available. Numerical tests in static
feedback controller design presented in Chapter 5 confirmed the theoretical
development.

Part II: Decomposition in separable optimization

In Chapter 6, we have briefly reviewed the related existing methods for solving
separable optimization problems both in the convex and nonconvex case. Then
we recalled the Lagrangian dual decomposition for separable convex optimization
problems and some concepts in parallel and distributed computing mechanism
and performance profiles which have been used throughout Chapters 7-10.

In Chapter 7, two new decomposition algorithms for large-scale separable convex
optimization have been proposed. These algorithms were designed based on
three techniques, namely dual decomposition, smoothing via proximity-functions
and excessive gap. The convergence of both algorithms has been proved and
the worst-case complexity bound has been established. The main advantage of
these algorithms is that they automatically update the smoothness parameters
without using any tuning strategy. This allows one to control the step-size of
the algorithms in order to generate a larger step at the first iterations towards
a solution. Although the global convergence rate is still sublinear, i.e. O(1/k),
where k is the iteration counter, the computational results are remarkable,
especially when the number of variables as well as the number of components

CONCLUSION 235

increase. Two switching variants of the proposed algorithms were obtained. As
a special case, the convergence of the second algorithm can be accelerated up
to O(1/k2) when it is applied to solve strongly convex programming problems.
This is similar to existing fast gradient methods in [142]. Extensions to inexact
cases have also been investigated. In these algorithms we allowed that one solves
the primal subproblems inexactly which is always the case in any practical
implementation. From a theoretical point of view, the algorithms possess a
good worst-case performance, due to the use of automatic strategies in updating
the algorithm parameters.

In Chapter 8, we proposed a new path-following gradient-based decomposition
algorithm for solving separable convex optimization problems. This algorithm
is also based on three techniques, namely dual decomposition, path-following
and smoothing via self-concordant barriers. The convergence of the algorithm
has been proved and the rate of local convergence has been estimated. We
have also adapted Nesterov’s fast gradient scheme to this framework. We
obtained a new variant of the fast gradient method for solving separable convex
optimization problems which has the worst-case complexity O(1/ε), where ε
is a given accuracy. Both algorithms have the following advantages. First,
the convergence rate of Algorithm 8.3.1 is O(1/k) which is faster than the
subgradient methods of multipliers recently considered in [61, 136]. Second,
the worst-case complexity bound of the algorithms does not depend on the
size of the feasible set as the one in [134]. It only depends on the size of the
problem. Moreover, we can solve the primal subproblems of each component in
both algorithms via a system of generalized equations instead of general convex
programs as in the previous chapter.

In Chapter 9, we took a closer look at the structure of the objective function
of the separable convex optimization problem where we assumed that this
function is self-concordant. It allows us to both apply smoothing techniques via
self-concordant barriers and the path-following method based on Newton-type
iterations. We have proposed a path-following algorithm with inexact perturbed
Newton iterations. The convergence of the algorithm has been analyzed and
its complexity has been estimated. The theory presented in this chapter
is significant in practice, since it allows us to solve the primal subproblems
inexactly. Moreover, we can balance between the accuracy of solving the primal
subproblem and the convergence rate of the path-following algorithm. As a
special case, we have obtained again the path-following methods studied by
Zhao [218], Mehrotra et al [131], Shida [171] and Necoara and Suykens [133].
However, by analyzing directly the path-following scheme, we can optimally
choose the algorithm parameters compared to those methods in [131, 133, 171,
218]. Numerical tests and comparisons have been implemented to verify the
theoretical development.

236 CONCLUSION

In Chapter 10, we have shown that we can apply the algorithms proposed in
the previous chapters to solve separable nonconvex optimization problems. By
combining an inexact sequential convex programming scheme in the context
of Part I and the algorithms proposed in Part II, we obtained a two-level
decomposition algorithm for solving separable nonconvex optimization problems.
This algorithm has also been verified via numerical tests.

11.2 Future research directions

The sequential convex programming (SCP) approach remains a promising
direction to pursue. In this thesis we have only proposed a generic adjoint based
predictor-corrector sequential convex programming algorithmic framework for
parametric optimization. As a consequence, we obtained an SCP algorithm
for solving nonconvex optimization problems and its local convergence result.
However, globalization strategies, global convergence as well as implementation
aspects for this algorithm have not completely been studied yet. This offers
more research to investigate further the theory and implementation of the
SCP algorithm. Besides, two important applications of SCP, namely in robust
optimization and experimental design have not been covered yet in the thesis.
Developing new variants of SCP which allows one to exploit specific structures
of these applications is interesting for future research.

Regarding the generalized inner approximation methods developed in Chapter 4,
we have showed that these algorithms can be applied to solve several nonconvex
semidefinite programs arising in static feedback controller design. However,
these algorithms can be applied to other applications, e.g. topology optimization,
where we can find a suitable inner convex approximation for such problems
by taking into account their specific structure. Extensions of this approach to
other problem classes will be an interesting research direction to discover.

In the second part of the thesis, we have focused on the dual decomposition
methods for separable convex optimization. Nevertheless, many optimization
applications in practice are nonconvex and hence dual decomposition approaches
are no longer directly applicable to these problems. Although we have
proposed a two-level decomposition method to solve separable nonconvex
optimization problems, but this algorithm still has several disadvantages.
Despite of mathematical challenges, it is necessary to develop new decomposition
algorithms for solving nonconvex optimization problems. In particular, one
can improve the two-level algorithm to obtain an one-loop algorithm. Besides,
the research on global iteration-complexity, distributed implementations of the

FUTURE RESEARCH DIRECTIONS 237

second order decomposition methods as well as online decomposition algorithms
remain open questions.

Alternatively to the theory development, we have only provided some
representative applications and academic numerical examples for testing the
algorithms. Developing new problem formulations for applications as well
as looking for practical problems which can be solved by the methodologies
developed in this thesis is also worthwhile for a future research direction.

Appendix A

The proof of technical
statements

A.1 The proof of technical statements in Chapt. 7

In this appendix, we provide a full proof of Lemmas and Theorems presented
in Chapter 7.

The proof of Theorem 7.7.1. We divide the proof of this theorem into two
cases. First, we show that the point (x̄+, ȳ+) generated by the scheme S̃2ps
maintains the δ+-excessive gap condition (7.2.7). Then we prove for the scheme
S̃2ds.

Case 1 (For scheme S̃2ps). Let us denote by y2+ := y∗(x̂;β+
2), x1 := x∗(ȳ;β1),

x̃1 := x̃∗(ȳ;β1), x̄∗+ := P(x̂;β+
2) and

∥∥x− x1
∥∥2
σ

:=
∑M
i=1 σXi

∥∥xi − x1
i

∥∥2.

From the definition of g(·;β1), (7.7.2)[line 2] and β+
1 = (1− τ)β1 we have:

g(ȳ+;β+
1) = min

x∈X

{
φ(x) + (ȳ+)T (Ax− b) + β+

1 pX(x)
}

line 2(7.7.2)= min
x∈X

{
(1− τ)

[
φ(x)+ȳT (Ax−b)+β1pX(x)

]
[1] (A.1.1)

+ τ
[
φ(x) + (y2+)T (Ax− b)

]
[2]

}
.

239

240 THE PROOF OF TECHNICAL STATEMENTS

First, we estimate the term [·][1] in (A.1.1). Since the function φ(·) + ȳT (A ·
−b) + β1pX(·) is strongly convex with a convexity parameter β1σX > 0, by
using the optimality condition, one can show:

[·][1] ≥ min
x∈X

{
φ(x) + ȳT (Ax− b) + β1pX(x)

}
+ β1

2
∥∥x− x1∥∥2

σ

(7.1.7)= g(ȳ;β1) + β1

2
∥∥x− x1∥∥2

σ
(A.1.2)

(7.2.7)
≥ f(x̄;β2) + β1

2
∥∥x− x1∥∥2

σ
− δ.

Note that since ψ(x̄;β2) = 1
2β2
‖Ax̄− b‖2 = (1−τ)

2β+
2
‖Ax̄− b‖2 = (1− τ)ψ(x̄;β+

2),
by substituting this relation into (A.1.2) we obtain:

[·][1] ≥ φ(x̄) + ψ(x̄;β2) + β1

2
∥∥x− x1∥∥2

σ
− δ

= φ(x̄) + ψ(x̄;β+
2)− τψ(x̄;β+

2) + β1

2
∥∥x− x1∥∥2

σ
− δ

def. ψ
≥ φ(x̄)+ψ(x̂;β+

2)+∇xψ(x̂;β+
2)T (x̄−x̂)+ β1

2
∥∥x−x1∥∥2

σ
−δ

+ 1
2β+

2
‖A(x̄− x̂)‖2 − τψ(x̄;β+

2). (A.1.3)

Here, the last inequality follows from the fact that ψ(x̄;β+
2) = 1

2β+
2
‖Ax̄− b‖2.

Next, we consider the term [·][2] of (A.1.1). We have:

[·][2] = φ(x) + (y2+)TA(x− x̂) + (Ax̂− b)T y2+

Lemma 7.1.3= φ(x) +∇xψ(x̂;β+
2)T (x− x̂) + 1

β+
2
‖Ax̂− b‖2 (A.1.4)

= φ(x) + ψ(x̂;β+
2) +∇xψ(x̂;β+

2)T (x− x̂) + ψ(x̂;β+
2).

From the definitions of ‖·‖σ, Dσ and ε[σ] we have ‖x− xc‖σ ≤ Dσ,
∥∥x̃1 − xc

∥∥
σ
≤

Dσ and
∥∥x1 − x̃1

∥∥
σ
≤ ε[σ]. Moreover,

∥∥x− x1
∥∥
σ
≥
∥∥x− x̃1

∥∥
σ
−
∥∥x1 − x̃1

∥∥
σ
.

THE PROOF OF TECHNICAL STATEMENTS IN CHAPTER 7 241

By using these estimates, we can derive:∥∥x− x1∥∥2
σ
≥
[∥∥x− x̃1∥∥

σ
−
∥∥x1 − x̃1∥∥

σ

]2
=
∥∥x− x̃1∥∥2

σ
− 2

∥∥x− x̃1∥∥
σ

∥∥x1 − x̃1∥∥
σ

+
∥∥x1 − x̃1∥∥2

σ

≥
∥∥x− x̃1∥∥2

σ
− 2

∥∥x1 − x̃1∥∥
σ

[
‖x− xc‖σ +

∥∥x̃1 − xc
∥∥
σ

]
≥
∥∥x− x̃1∥∥2

σ
− 4Dσε[σ]. (A.1.5)

Furthermore, the condition (7.7.8) can be expressed as:

(1− τ)
τ2 β1σi ≥

L̄2

(1− τ)β2
= Lψi (β+

2), i = 1, · · · ,M. (A.1.6)

By substituting (A.1.3) and (A.1.4) into (A.1.1) we get:

g(ȳ+;β+
1) = min

x∈X

{
(1− τ)[·][1] + τ [·][2]

}
(A.1.3)+(A.1.4)

≥ min
x∈X

{
(1−τ)φ(x̄)+τφ(x)+ψ(x̂;β+

2)+∇ψ(x̂;β+
2)T

[(1−τ)(x̄−x̂)+τ(x−x̂)] + (1− τ)β1

2
∥∥x− x1∥∥2

σ

}
− (1− τ)δ

+
[
τψ(x̂;β+

2)− (1− τ)τψ(x̄;β+
2) + (1− τ)

2β+
2
‖A(x̄− x̂)‖2

]
[3]
.

Since τ(x− x̃1) = (1− τ)x̄+ τx− x̂, by using (A.1.5) and (A.1.6) we can further
estimate the last inequality as:

g(ȳ+;β+
1)
φ−convex
≥ min

x∈X

{
φ((1−τ)x̄+τx)+ψ(x̂;β+

2)+∇ψ(x̂;β+
2)((1−τ)x̄+τx−x̂)

+ (1− τ)β1

2
∥∥x− x̃1∥∥2

σ

}
− (1− τ)δ − 2(1− τ)β1Dσε[σ] + [·][3]

= min
u:=(1−τ)x̄+τx∈X

{
φ(u)+ψ(x̂;β+

2)+∇ψ(x̂;β+
2)(u−x̂)+ (1−τ)β1

2τ2 ‖u−x̂‖2σ
}

− 2(1− τ)β1Dσε[σ] − (1− τ)δ + [·][3]

(A.1.6)
≥ min

u∈X

{
φ(u)+ψ(x̂;β+

2)+∇ψ(x̂;β+
2)(u−x̂)+Lψ(β+

2)
2 ‖u−x̂‖2σ

}
− 2(1− τ)β1Dσε[σ] − (1− τ)δ + [·][3]. (A.1.7)

242 THE PROOF OF TECHNICAL STATEMENTS

Now, by using the definition of ϕ in (7.2.13) the above inequality implies:

g(ȳ+;β+
1)

(7.2.13)
≥ ϕ(x̄∗+; x̂, β+

2)− 2(1− τ)β1Dσε[σ] − (1− τ)δ + [·][3]

(7.2.14)
≥ ϕ(x̄+; x̂, β+

2)− 2(1−τ)β1Dσε[σ] − (1−τ)δ − 0.5ε2
A + [·][3]

(7.1.15)
≥ f(x̄+;β+

2)−2(1−τ)β1Dσε[σ]−(1−τ)δ−0.5ε2
A + [·][3], (A.1.8)

where εA := [
∑M
i=1 L

ψ
i (β+

2)ε2
i]1/2.

To complete the proof, we estimate [·][3] as follows:

[·][3] = τψ(x̂;β+
2)− τ(1− τ)ψ(x̄;β+

2) + (1− τ)
2β+

2
‖A(x̄− x̂‖2

= 1
2β+

2

[
τ ‖Ax̂− b‖2 − τ(1− τ) ‖Ax̄− b‖2 + (1− τ) ‖A(x̄− x̂)‖2

]
= 1

2β+
2
‖(Ax̂− b)− (1− τ)(Ax̄− b)‖2 ≥ 0. (A.1.9)

By substituting (A.1.9) into (A.1.8) and then using the definition of δ+ in
(7.1.12) we obtain:

g(ȳ+;β+
1) ≥ f(x̄+;β+

2)− δ+,
where

δ+ := (1− τ)δ + 2β1(1− τ)Dσε[σ] + 0.5
M∑
i=1

Lψi (β+
2)ε2

i

= (1− τ)δ + η1(τ, β1, β2, ε).

This is indeed the δ+-excessive gap condition (7.2.7).

Case 2 (For scheme S̃2ds). Let us denote by ȳ2 := y∗(x̄;β2), x̂1 := x∗(ŷ;β1)
and ˜̂x1 = x̃∗(ŷ;β1). From the definition of f , the second line of (7.7.3), we have:

f(x̄+;β+
2) := φ(x̄+) + ψ(x̄+;β+

2)

line 2(7.7.3)= φ((1−τ)x̄+τ ˜̂x1) + max
y∈Rm

{[
A((1−τ)x̄+τ ˜̂x1)−b

]T
y−β+

2 pY (y)
}

φ−convex+(7.4.2)
≤ max

y∈Rm

{
(1−τ)

[
φ(x̄)+(Ax̄−b)T y−β2pY (y)

]
[4]

+ τ
[
φ(˜̂x1)+(A˜̂x1−b)T y

]
[5]

}
. (A.1.10)

THE PROOF OF TECHNICAL STATEMENTS IN CHAPTER 7 243

Now, we estimate two terms [·][4] and [·][5] in the last line of (A.1.10). First we

note that pY (y) = 1
2 ‖y‖

2 and aT y − β
2 ‖y‖

2 = 1
2β ‖a‖

2 − β
2

∥∥∥y − 1
βa
∥∥∥2

for any
vectors a and y and β > 0. Moreover, since ȳ2 is the solution of the strongly
concave maximization (7.1.12) with a concavity parameter β2, we can estimate:

[·][4] = φ(x̄) + 1
2β2
‖Ax̄− b‖2 − β2

2
∥∥y − ȳ2∥∥2

= φ(x̄) + ψ(x̄;β2)− β2

2
∥∥y − ȳ2∥∥2 (7.1.13)= f(x̄;β2)− β2

2
∥∥y − ȳ2∥∥2

(7.2.7)
≤ g(ȳ;β1)− β2

2
∥∥y − ȳ2∥∥2 + δ (A.1.11)

g(·;β1)−concave
≤ g(ŷ;β1) +∇yg(ŷ;β1)T (ȳ − ŷ)− β2

2
∥∥y − ȳ2∥∥2 + δ

(7.2.4)
≤ g(ŷ;β1)+∇̃yg(ŷ;β1)T (ȳ−ŷ)− β2

2
∥∥y−ȳ2∥∥2

2+(ȳ−ŷ)TA(x̂1− ˜̂x1)+δ.

Alternatively, by using (7.7.1), the second term [·][5] can be estimated as:

[·][5] = φ(˜̂x1) + (A˜̂x1 − b)T ŷ + β1pX(˜̂x1)

+ (A˜̂x1 − b)T (y − ŷ)− β1pX(˜̂x1)

(7.2.2)
≤ φ(x̂1)+(Ax̂1−b)T ŷ+β1pX(x̂1)

+ (A˜̂x1−b)T(y−ŷ)−β1pX(˜̂x1)+ β1

2 ε
2
[σ]

(7.1.7)+(7.2.4)= g(ŷ;β1)+∇̃yg(ŷ;β1)T (y−ŷ)

− β1pX(˜̂x1)+ β1

2 ε
2
[σ]. (A.1.12)

Next, we consider the point u := ȳ + τ(y − ȳ) with τ ∈ (0, 1). It is easy to see
that if y ∈ Rm then u ∈ Rm. Moreover, we have{

(1− τ)(ȳ − ŷ) + τ(y − ŷ) = ȳ + τ(y − ȳ)− ŷ = u− ŷ,
u− ŷ = u− (1− τ)ȳ − τ ȳ2 = τ(y − ȳ2).

(A.1.13)

244 THE PROOF OF TECHNICAL STATEMENTS

By substituting (A.1.11) and (A.1.12) into (A.1.10) and then using (A.1.13),
we deduce:

f(x̄+;β+
2) ≤ max

y∈Rm

{
(1− τ)[·][4] + τ [·][5]

}
(A.1.14)

(A.1.11)+(A.1.12)
≤ max

y∈Rm

{
(1− τ)g(ŷ;β1) + τg(ŷ;β1)

+ ∇̃yg(ŷ;β1)T [(1−τ)(ȳ − ŷ) + τ(y−ŷ)]− (1− τ)β2

2
∥∥y − ȳ2∥∥2

}
− τβ1pX(˜̂x1) + 0.5τβ1ε

2
[σ] + (1− τ)δ + (1− τ)(ȳ − ŷ)TA(x̂1 − ˜̂x1)

(A.1.13)=
[

max
u∈Rm

{
g(ŷ;β1) + ∇̃yg(ŷ;β1)T (u− ŷ)− (1− τ)β2

2τ2 ‖u− ŷ‖2
}]

[6]

+
[
0.5τβ1ε

2
[σ] + (1− τ)δ + (1− τ)(ȳ − ŷ)TA(x̂1 − ˜̂x1)− τβ1pX(˜̂x1)

]
[7]
.

From (7.7.8) we have:

(1− τ)
τ2 β2 ≥

L̄2

β1

Lemma 7.1.1
≥ Lg(β1), i = 1, · · · ,M. (A.1.15)

Let us consider the first term [·][6] of (A.1.14). By using (A.1.15), we can
estimate [·][6] as:

[·][6] = max
u∈Rm

{
g(ŷ;β1) + ∇̃yg(ŷ;β1)T (u− ŷ)− (1− τ)β2

2τ2 ‖u− ŷ‖2
}

(A.1.15)
≤ max

u∈Rm

{
g(ŷ;β1) + ∇̃yg(ŷ;β1)T (u− ŷ)− Lg(β1)

2 ‖u− ŷ‖2
}

(7.7.3)(line 3)= g(ŷ;β1) + ∇̃yg(ŷ;β1)T (ȳ+ − ŷ)− Lg(β1)
2

∥∥ȳ+ − ŷ
∥∥2

(7.2.4)= g(ŷ;β1)+∇yg(ŷ;β1)T(ȳ+−ŷ)−L
g(β1)
2

∥∥ȳ+−ŷ
∥∥2+(ȳ+−ŷ)TA(˜̂x1−x̂1)

(7.1.10)
≤ g(ȳ+;β1) + (ȳ+ − ŷ)TA(x̂1 − ˜̂x1)

(7.1.11)
≤ g(ȳ+;β+

1) + (β1 − β+
1)pX(x∗(ȳ+;β+

1)) + (ȳ+ − ŷ)TA(x̂1 − ˜̂x1)

(7.4.2)+(7.4.4)
≤ g(ȳ+;β+

1) +
[
ατβ1DX + (ȳ+ − ŷ)TA(x̂1 − ˜̂x1)

]
[8] . (A.1.16)

THE PROOF OF TECHNICAL STATEMENTS IN CHAPTER 7 245

In order to estimate the term: [·][7] + [·][8], we see that:

(ȳ+ − ŷ)− (1− τ)(ŷ − ȳ) (7.7.3)line 1= Lg(β1)−1(A˜̂x1 − b) + (1− τ)τ(ȳ2 − ȳ)

= Lg(β1)−1A(˜̂x1 − xc) + Lg(β1)−1(Axc − b)− (1− τ)τ ȳ

+ β−1
2 (1− τ)τA(x̄− xc) + β−1

2 (1− τ)τ(Axc − b),

which leads to

AT
[
(ȳ+−ŷ)−(1−τ)(ŷ−ȳ)

]
≤ L̄−1β1 ‖A‖2

∥∥˜̂x1 − xc
∥∥+ L̄−1β1

∥∥AT (Axc − b)
∥∥

+ β−1
2 (1−τ)τ ‖A‖2 ‖x̄−xc‖+β−1

2 (1−τ)τ
∥∥AT(Axc−b)∥∥

+ (1− τ)τ ‖A‖ ‖ȳ‖ . (A.1.17)

From the definition of Dσ in (7.7.1), we have
∥∥˜̂x1 − xc

∥∥ ≤ Dσ and ‖x̄− xc‖ ≤
Dσ. By substituting these estimates into (A.1.17) and using the definitions of
[·][7] and [·][8] we have:

[·][7] + [·][8] ≤ (1− τ)δ + τβ1

2 ε2
[σ] + τβ1(αDX − pX(˜̂x1))

+
[
L̄−1β1Cd + (1− τ)τ

(
β−1

2 Cd + ‖A‖ ‖ȳ‖
)]
ε[1]. (A.1.18)

By combining (A.1.14), (A.1.16) and (A.1.18), and note that αDX−pX(˜̂x1) ≤ 0,
we obtain:

f(x̄+;β+
2) ≤ g(ȳ+;β+

1) + τβ1(αDX − pX(˜̂x1)) + (1− τ)δ + η(τ, β1, β2, ȳ, ε)

≤ g(ȳ+;β+
1) + (1− τ)δ + η(τ, β1, β2, ȳ, ε)

= g(ȳ+;β+
1) + δ+,

which is indeed the inequality (7.2.7) w.r.t. β+
1 , β+

2 and δ+.

The proof of Theorem 7.3.2 and Theorem 7.4.1. The conclusions of The-
orems 7.3.2 and 7.4.1 follow directly from Theorem 7.7.1 as a consequence by
replacing the accuracy ε = 0 in this theorem.

The proof of Lemma 7.7.1. Similar to the proof of Theorem 7.7.1, we divide
the proof of this lemma into two cases corresponding to a) and b) in (7.7.4).

246 THE PROOF OF TECHNICAL STATEMENTS

Case 1 (The initial point (x̄0, ȳ0) is generated by scheme a) of (7.7.4)). Let us
denote by x̄∗0 := P(xc;β2). Since ȳ0 := β−1

2 (Axc − b), we have:

1
β2
‖Axc − b‖2 + 1

β2
(Axc − b)TA(x− xc) = (ȳ0)T (Ax− b)− 1

2β2
‖Axc − b‖2

≤ (ȳ0)T (Ax− b). (A.1.19)

It follows from the definition of P(xc;β2) in (7.2.13), the definition of ψ and
(A.1.19) that:

ϕ(x̄∗0;xc, β2) = min
x∈X

ϕ(x;xc, β2)

= min
x∈X

{
φ(x) + ψ(xc;β2) +∇xψ(xc;β2)T (x− xc) +

M∑
i=1

Lψi (β2)
2 ‖xi − xci‖

2

}

(7.1.12)+(A.1.19)
≤ min

x∈X

{
φ(x) + (Ax− b)T ȳ0 +

M∑
i=1

Lψi (β2)
2 ‖xi − xci‖

2

}
. (A.1.20)

From the condition β1β2 ≥ L̄2 we have:

β1σXi ≥
M

β2
‖Ai‖2 = Lψi (β2), i = 1, · · · ,M.

Substituting these inequalities into (A.1.20) and using the definition of g in
(7.1.8) we obtain:

ϕ(x̄∗0;xc, β2) = min
x∈X

ϕ(x;xc, β2)

≤ min
x∈X

{
φ(x) + (Ax− b)T ȳ0 +

M∑
i=1

β1σi
2 ‖xi − xci‖

2

}

≤ min
x∈X

{
φ(x) + (Ax− b)T ȳ0 +

M∑
i=1

pXi(xi)
}

= g(ȳ0;β1). (A.1.21)

Now, by the condition (7.2.14), it follows from (A.1.21) that:

ϕ(x̄0;xc, β2) ≤ g(ȳ0;β1) + 0.5
M∑
i=1

Lψi (β2)ε2
i . (A.1.22)

THE PROOF OF TECHNICAL STATEMENTS IN CHAPTER 7 247

On the other hand, from (7.1.15) we have:

f(x̄0;β2) = φ(x̄0) + ψ(x̄0;β2) ≤ ϕ(x̄0;xc, β2). (A.1.23)

Combining (A.1.23) and (A.1.22), we obtain:

f(x̄0;β2) ≤ g(ȳ0;β1) + δ0,

which is indeed the δ0-excessive gap condition (7.2.7), where δ0 := 0.5
∑M
i=1 L

ψ
i (β2)ε2

i .

Case 2 (The initial point (x̄0, ȳ0) is generated by scheme b) of (7.7.4)).
For notational simplicity, we denote by x̂∗ := x∗(0m;β1), x̃∗ := x̃∗(0m;β1),
h(·; y, β1) :=

∑M
i=1 hi(·; y, β1) and g1(y) := g(y;β1), where hi is defined in

Definition 7.2.1. By using the inexactness in the inequality (7.2.2), we have
h(x̃∗; y, β1) ≤ h(x̂∗; y, β1) + 1

2β1ε
2
[σ] which is rewritten as:

φ(x̃∗)+β1pX(x̃∗)≤φ(x̂∗)+β1pX(x̂∗)+ β1

2 ε
2
[σ]

(7.1.7)= g1(0m)+ β1

2 ε
2
[σ]. (A.1.24)

Since g1 is concave, by using (7.1.10) and ∇yg1(0m) = Ax̂∗ − b we have:

g1(ȳ0) ≥ g1(0m) +∇yg1(0m)T ȳ0 − Lg(β1)
2

∥∥ȳ0∥∥2

= g1(0m) + (Ax̂∗ − b)T ȳ0 − Lg(β1)
2

∥∥ȳ0∥∥2

(A.1.24)
≥ φ(x̃∗) + β1pX(x̃∗) + (Ax̂∗ − b)T ȳ0 − Lg(β1)

2
∥∥ȳ0∥∥2 − β1

2 ε
2
[σ]

= φ(x̃∗) + (Ax̃∗ − b)T ȳ0 − Lg(β1)
2

∥∥ȳ0∥∥2

+ (ȳ0)TA(x̂∗ − x̃∗) + β1pX(x̃∗)− β1

2 ε
2
[σ]. (A.1.25)

Since ‖x̂∗ − x̃∗‖ ≤ ε[1], pX(x̃∗) ≥ p∗X > 0 and ȳ0 is the solution of (7.1.12), we
estimate the last inequality (A.1.25) as:

g1(ȳ0) ≥ φ(x̃∗)+ max
y∈Rm

{
(Ax̃∗−b)T y−L

g(β1)
2 ‖y‖2

}
−
∥∥AT ȳ0∥∥ ‖x̂∗−x̃∗‖− β1

2 ε
2
[σ]

(7.7.6)+(7.7.1)
≥ φ(x̃∗) + max

y∈Rm

{
(Ax̃∗ − b)T y − β2

2 ‖y‖
2
}
−
∥∥AT ȳ0∥∥ ε[1] −

β1

2 ε
2
[σ]

(7.1.13)
≥ f(x̄0;β2)−

[∥∥AT ȳ0∥∥ ε[1] + β1

2 ε
2
[σ]

]
. (A.1.26)

248 THE PROOF OF TECHNICAL STATEMENTS

Now, we see that p∗X + σi
2
∥∥x̄0

i − xci
∥∥2 ≤ pXi(x̄0

i) ≤ sup
xi∈Xi

pXi(xi) = DXi . Thus,∥∥x̄0
i − xci

∥∥2 ≤ 2
σi

(DXi − p∗Xi) for all i = 1, · · · ,M . By using the definition of
Dσ in (7.7.1), the last inequalities imply:∥∥x̄0 − xc

∥∥ ≤ Dσ. (A.1.27)

Finally, we note that AT ȳ0 = (Lg(β1))−1AT (Ax̄0 − b) due to (7.7.4). This
relation leads to∥∥AT ȳ0∥∥ = Lg(β1)−1 ∥∥AT (Ax̄0 − b)

∥∥ = Lg(β1)−1 ∥∥AT (A(x̄0 − xc) +Axc − b)
∥∥

≤ Lg(β1)−1 [∥∥ATA∥∥ ∥∥x̄0 − xc
∥∥+

∥∥AT (Axc − b)
∥∥]

(A.1.27)
≤ L̄−1β1

[
‖A‖2Dσ +

∥∥AT (Axc − b)
∥∥]

(7.7.1)= L̄−1β1Cd. (A.1.28)

By substituting (A.1.27) and (A.1.28) into (A.1.26) and then using the definition
of δ0 we obtain the conclusion of the lemma.

The proof of Lemma 7.3.1. Lemma 7.3.1 is a special case of Lemma 7.7.1
without the inexactness. We obtain its conclusions directly from the proof of
Lemma 7.7.1.

The proof of Corollary 7.3.1. Indeed, let us prove the condition g(ȳ+;β+
1) ≥

f(ˆ̄x+;β+
2), where ˆ̄x+ := G(x̂;β+

2). First, by using the convexity of φi and the
Lipschitz continuity of its gradient, we have:{

φi(x̂i) +∇φi(x̂i)T (ui − x̂i) ≤ φi(ui),
φi(ui) ≤ φi(x̂i) +∇φi(x̂i)T (ui − x̂i) + Lφi

2 ‖ui − x̂i‖
2
.

(A.1.29)

Next, by summing up the second inequality for i = 1, · · · ,M and adding to
(7.1.15) we have:

φ(u) + ψ(u;β+
2) ≤ φ(x̂) + ψ(x̂;β+

2) +
[
∇φ(x̂) +∇ψ(x̂;β+

2)
]T (u− x̂)

+
M∑
i=1

L̂ψi (β+
2)

2 ‖ui − x̂i‖2 . (A.1.30)

THE PROOF OF TECHNICAL STATEMENTS IN CHAPTER 7 249

Finally, by we substitute ε = 0 into the second inequality of (A.1.7), one can
obtain:

g(ȳ+;β+
1)−[·][3]

(A.1)
≥ min

u∈X

{
φ(u)+ψ(x̂;β+

2)+∇ψ(x̂;β+
2)T(u−x̂)

+
M∑
i=1

(1−τ)β1σ1

2τ2 ‖ui−x̂i‖2
}

φ−convex+(A.1.30)
≥ min

u∈X

{
φ(x̂) +∇φ(x̂)T (u− x̂) + ψ(x̂;β+

2) +∇ψ(x̂;β+
2)T (u− x̂)

+
M∑
i=1

L̂ψi (β+
2)

2 ‖ui − x̂i‖2
}

(7.1.1)= φ(x̂) + ψ(x̂;β+
2) +

[
∇φ(x̂)+∇ψ(x̂;β+

2)
]T (ˆ̄x+−x̂)+

M∑
i=1

L̂ψi (β+
2)

2
∥∥ˆ̄x+

i −x̂i
∥∥2

(A.1.30)
≥ φ(ˆ̄x+) + ψ(ˆ̄x+;β+

2) = f(ˆ̄x+;β+
2).

In this case, the conclusion of Theorem 7.3.2 is still valid for the substitution
ˆ̄x+ := G(x̂;β+

2) provided that:

(1− τ)
τ2 β1σXi ≥ Lφi + M ‖Ai‖2

(1− τ)β2
, i ∈ {1, · · · ,M} .

This completes the proof.

The proof of Lemma 7.4.1. Let us consider ξ(t;α) := 2√
t3/(t−2α)+1+1

,
where α ∈ [0, 1] and t ≥ 2. After a few simple calculations, we can estimate
t + α ≤

√
t3/(t− 2α) + 1 ≤ t + 1 for all t > 2 max{1, α(1 − α)−1}. These

estimates lead to

2
t+ 2 ≤ ξ(t;α) ≤ 2

t+ 1 + α
,∀t > 2 max{1, (1− α)−1α}.

From the update rule (7.4.6) we can show that the sequence {τk}k≥0 satisfies
τk+1 := ξ(2

τk
;αk). If we define tk := 2

τk
then 2

tk+1
= ξ(τk;αk). Therefore, one

can estimate tk + 1 + αk ≤ tk+1 ≤ tk + 2 for tk > 2 max{1, (1 − αk)−1αk}.
Note that αk ≥ α∗ by Assumption 7.4.9, by induction, we can show that
t0 + (1 + α∗)k ≤ tk ≤ t0 + 2k for k ≥ 0 and t0 > 2 max{1, (1 − α∗)−1α∗}.

250 THE PROOF OF TECHNICAL STATEMENTS

However, since tk = 2
τk
, the last inequalities lead to

1
k + 1/τ0

= 1
k + t0/2

≤ τk ≤
1

0.5(1 + α∗)k + t0/2
= 1

0.5(1 + α∗)k + 1/τ0
,

which is indeed (7.4.7). Here, 0 < τ0 = 2/t0 and τ0 < [max{1, (1−α∗)−1α∗}]−1.

In order to prove (7.4.8), we note that (1−αkτk)(1−τk+1) = τ2
k+1
τ2
k

. By induction,
we have:

k−1∏
i=0

(1− αiτi)
k−1∏
i=0

(1− τi+1) = (1− τ0)τ2
k

τ2
0

.

By combining this relation and the update rule (7.4.2), we deduce βk1βk+1
2 =

β0
1β

0
2

(1−τ0)τ2
k

τ2
0

which is the third statement of (7.4.8).

Next, we prove the bound on βk1 . Since βk+1
1 = β0

1
∏k
i=0(1− αiτi), we have:

β0
1

k∏
i=0

(1− τi) ≤ βk+1
1 ≤ β0

1

k∏
i=0

(1− α∗τi).

By using the following elementary inequalities −t − t2 ≤ ln(1 − t) ≤ −t for
all t ∈ [0, 1/2], we obtain β0

1e
−S1−S2 ≤ βk+1

1 ≤ β0
1e
−α∗S1 , where S1 :=

∑k
i=0 τi

and S2 :=
∑k
i=0 τ

2
i . From (7.4.7), on the one hand, we have:

k∑
i=0

1
i+ 1/τ0

≤ S1 ≤
k∑
i=0

1
0.5(1 + α∗)i+ 1/τ0

,

which lead to

ln(k + 1/τ0) + ln τ0 ≤ S1 ≤
1

0.5(1 + α∗) ln(k + 1/τ0) + γ0,

for some constant γ0. On the other hand, we can show that S2 converges to
some constant γ2 > 0. Combining all the above estimates together we get

γ
(τ0k+1)2/(1+α∗) ≤ βk+1

1 ≤ β0
1

(τ0k+1)α∗ for some positive constant γ. Finally, we
estimate the bound on βk2 . Indeed, it follows from (7.4.7) that:

βk+1
2 = β0

2

k∏
i=0

(1− τk) ≤ β0
2

k∏
i=0

(1− 1
k + 1/τ0

) = β0
2

1/τ0 − 1
k + 1/τ0

= β0
2(1− τ0)
τ0k + 1 ,

which is the second formula in (7.4.8).

THE PROOF OF TECHNICAL STATEMENTS IN CHAPTER 9 251

The proof of Lemma 7.5.2. Let us define ξ(t) := 2√
1+4/t2+1

. It is easy to
show that ξ is increasing in (0, 1). Moreover, τk+1 = ξ(τk) for all k ≥ 0. Let us
introduce u := 2/t. Then, we can show that 2

u+2 < ξ(2
u) < 2

u+1 . By using this
inequalities and the increase of ξ in (0, 1), we have:

τ0
1 + τ0k

≡ 2
u0 + 2k < τk <

2
u0 + k

≡ 2τ0
2 + τ0k

. (A.1.31)

Now, by the update rule (7.5.6), at each iteration k, we only either update βk1
or βk2 . Hence, this implies:

βk1 = (1− τ0)(1− τ2) · · · (1− τ2bk/2c)β0
1 ,

βk2 = (1− τ1)(1− τ3) · · · (1− τ2bk/2c−1)β0
2 , (A.1.32)

where bxc is the largest integer number which is less than or equal to the positive
real number x. On the other hand, since τi+1 < τi for i ≥ 0, for any l ≥ 0, we
have:

(1−τ0)
2l∏
i=0

(1−τi)< [(1−τ0)(1−τ2) · · · (1−τ2l)]2<
2l+1∏
i=0

(1−τi), (A.1.33)

and
2l−1∏
i=0

(1− τi) < [(1− τ1)(1− τ3) · · · (1− τ2l−1)]2 < (1− τ0)−1
2l∏
i=0

(1− τi).

Note that
∏k
i=0(1 − τi) = (1−τ0)

τ2
0

τ2
k , it follows from (A.1.32) and (A.1.33) for

k ≥ 1 that:

(1−τ0)β0
1

τ0
τk+1 < βk+1

1 <
β0

1
√

1−τ0
τ0

τk−1, and
β0

2
√

1−τ0
τ0

τk+1 < βk+1
2 <

β0
2
τ0
τk−1.

By combining these inequalities and (A.1.31), and noting that τ0 ∈ (0, 1), we
obtain (7.5.7).

A.2 The proof of technical statements in Chapt. 9

In order to prove Lemma A.2.1 in Chapter 9, we need the following auxiliary
results.
Lemma A.2.1. Suppose that Assumptions A.6.1.7, A.8.1.10 and A.9.1.11
are satisfied. Then:

252 THE PROOF OF TECHNICAL STATEMENTS

a) ∇2g̃ and ∇2g̃δ̄ defined by (9.1.2) and (9.2.3), respectively, guarantee:

(1− δ+)2∇2g̃(y+; t+) � ∇2g̃δ̄(y+; t+) � (1− δ+)−2∇2g̃(y+; t+), (A.2.1)

where δ+ < 1 defined by (9.2.6).

b) Moreover, one has:

‖∇g̃δ̄(y; t)−∇g̃(y; t)‖∗y ≤ ‖x̄δ̄ − x
∗‖x∗ . (A.2.2)

c) If ∆ < 1 then λ̄1 ≤ ∆+λ̄
1−∆ .

Proof. Since F is standard self-concordant, for any x ∈ dom(F) and z such
that ‖z − x‖x < 1, it follows from [142, Theorem 4.1.6] that:

(1− ‖z − x‖x)2∇2F (x) � ∇2F (z) � (1− ‖z − x‖x)−2∇2F (x). (A.2.3)

Since ∇2F (x) is symmetric positive definite, by applying [13, Proposition 8.6.6]
to two matrices (1−‖z − x‖x)−2∇2F (x) and ∇2F (z), and then to two matrices
(1− ‖z − x‖x)2∇2F (x) and ∇2F (z) we obtain:

(1− ‖z − x‖x)2A∇2F (x)−1AT � A∇2F (z)−1AT

� (1− ‖z − x‖x)−2A∇2F (x)−1AT . (A.2.4)

Using again [13, Proposition 8.6.6] for (A.2.4) we get:

(1− ‖z − x‖x)2AT [A∇2F (x)−1AT]−1A � AT [A∇2F (z)−1AT]−1A

� (1− ‖z − x‖x)−2AT [A∇2F (x)−1AT]−1A. (A.2.5)

Now, by using (9.1.2) and (9.1.3), we have ∇2g̃(y; t) = t−2A∇2F (x∗)−1AT . Al-
ternatively, by using (9.2.3) and (9.2.4), we get∇2g̃δ̄(y; t) = t−2A∇2F (x̄δ̄)−1AT .
Substituting these relations with x = x∗+ and z = x̄δ̄+ into (A.2.4) and noting
that δ+ = δ(x̄+, x

∗
+) defined by (9.2.6), we obtain (A.2.1).

Next, we prove b). For any x ∈ dom(F), we have ∇2F (x) � 0. We show that
the matrix M(x) :=

[
∇2F (x) AT

A A∇2F (x)−1AT

]
is symmetric positive semidefinite.

THE PROOF OF TECHNICAL STATEMENTS IN CHAPTER 9 253

Indeed, for any z = (u, v) ∈ Rn ×Rm, we have:

zTM(x)z = uT∇2F (x)u+ uTAT v + vTAu+ vTA∇2F (x)−1AT v

=
∥∥∥∇2F (x)1/2u

∥∥∥2
+ 2(∇2F (x)1/2u)T (∇2F (x)−1/2AT v)

+
∥∥∥∇2F (x)−1/2AT v

∥∥∥2

=
∥∥∥∇2F (x)1/2u+∇2F (x)−1/2AT v

∥∥∥2
≥ 0,

which shows that M(x) � 0. Since A has full-row rank, A∇2F (x)−1AT � 0.
By applying Schur’s complement to M(x), see [13], we obtain:

AT [A∇2F (x)−1AT]−1A � ∇2F (x). (A.2.6)

To prove (A.2.2) we note that∇gδ̄(y; t)−∇g(y; t) = A(x̄δ̄−x∗). Thus∇g̃δ̄(y; t)−
∇g̃(y; t) = 1

tA(x̄δ̄ − x∗). This implies:[
‖∇g̃δ̄(y; t)−∇g̃(y; t)‖∗y

]2
= t−2(x̄δ̄ − x∗)TAT∇2g̃(y; t)−1A(x̄δ̄ − x∗)

(9.1.2),(9.1.3)= (x̄δ̄ − x∗)TAT [A∇2F (x∗)−1AT]−1A(x̄δ̄ − x∗)

(A.2.6)
≤ (x̄δ̄ − x∗)T∇2F (x∗)(x̄δ̄ − x∗)

= ‖x̄δ̄ − x∗‖
2
x∗ ,

which is equivalent to (A.2.2).

Finally, we prove c). By using the definitions of ∇g̃δ̄(·; t+) and ∇2g̃δ̄(·; t+) in
(9.2.3), of g̃δ̄(·; t+) in (9.2.4), for any feasible point x̂ of (SepCOPmax), it follows
from the definition of λ̄1 in (9.2.5) and Ax̂ = b that:

λ̄2
1 =

[
|‖∇g̃δ̄(y; t+)‖|∗y

]2 (9.2.5)= ∇g̃δ̄(y; t+)∇2g̃δ̄(y; t+)−1∇g̃δ̄(y; t+)

(9.2.4)= t−1
+ ∇gδ̄(y; t+)∇2gδ̄(y; t+)−1∇gδ̄(y; t+) (A.2.7)

(9.2.3)= (x̄δ̄1 − x̂)TAT
[
A∇2F (x̄δ̄1)−1AT

]−1
A(x̄δ̄1 − x̂).

Since ∆ = ‖x̄δ̄1 − x̄δ̄‖x̄δ̄ < 1 by assumption, we can apply the right-hand side
of (A.2.5) with x = x̄δ̄ and z = x̄δ̄1 to obtain:

λ̄2
1 ≤ (1−∆)−2(x̄δ̄1 − x̂)TAT

[
A∇2F (x̄δ̄)−1AT

]−1
A(x̄δ̄1 − x̂). (A.2.8)

254 THE PROOF OF TECHNICAL STATEMENTS

Now, for any symmetric positive semidefinite matrix Q in Rn×n and u, v ∈ Rn,
one can easily show that:

(u+ v)TQ(u+ v) ≤
[
(uTQu)1/2 + (vTQv)1/2]2. (A.2.9)

Since Hδ̄ := AT
[
A∇2F (x̄δ̄)−1AT

]−1
A � 0, by applying (A.2.9) with Q = Hδ̄,

u = x̄δ̄1 − x̄δ̄ and v = x̄δ̄ − x̂, we have:

λ̄2
1 ≤ (1−∆)−2

{[
(x̄δ̄1−x̄δ̄)THδ̄(x̄δ̄1−x̄δ̄)

]1/2
[1] +

[
(x̄δ̄−x̂)THδ̄(x̄δ̄−x̂)

]1/2
[2]

}2
. (A.2.10)

Note that Hδ̄ � ∇2F (x̄δ̄) due to (A.2.6). The first term [·][1] in (A.2.10) satisfies:

[·][1] ≤ (x̄δ̄+ − x̄δ̄)T∇2F (x̄δ̄)(x̄δ̄1 − x̄δ̄) = ∆2. (A.2.11)
On the other hand, by substituting x̄δ̄1 by x̄δ̄ into (A.2.7), we get:

λ̄2 = (x̄δ̄−x̂)TAT
[
A∇2F (x̄δ̄)−1AT

]−1
A(x̄δ̄−x̂)=(x̄δ̄−x̂)THδ̄(x̄δ̄−x̂). (A.2.12)

Combining (A.2.10), (A.2.11) and (A.2.12), we obtain λ̄1 ≤ ∆+λ̄
1−∆ which is indeed

the statement c).

The proof of Lemma A.2.1. Since δ1 + 2∆ + λ̄ < 1, it implies that δ1 < 1,
∆ < 1/2 and λ̄ < 1. The proof of Lemma 9.2.2 is divided into several steps as
follows.

Step 1. First, let p := y+ − y, we prove the following inequality:

λ̄+≤(1−δ+)−1
{
δ++(1−‖p‖y)−1[δ1+ (2δ1−δ2

1)
(1−δ1)2 ‖p‖y+

‖p‖2y
1− ‖p‖y

]}
. (A.2.13)

Indeed, it follows from (A.2.1) that:

λ̄+ = |‖∇g̃δ̄(y+; t+)‖|∗y+
=
[
∇g̃δ̄(y+; t+)∇2g̃δ̄(y+; t+)−1∇g̃δ̄(y+; t+)

]1/2
(A.2.1)
≤ (1− δ+)−1[∇g̃δ̄(y+; t+)∇2g̃(y+; t+)−1∇g̃δ̄(y+; t+)

]1/2 (A.2.14)

≤ (1− δ+)−1 ‖∇g̃δ̄(y+; t+)‖∗y+
.

Furthermore, by using (A.2.2) we have:

‖∇g̃δ̄(y+; t+)‖∗y+
≤ ‖∇g̃(y+; t+)‖∗y+

+ ‖∇g̃δ̄(y+; t+)−∇g̃(y+; t+)‖∗y+

(A.2.2)
≤ ‖∇g̃(y+; t+)‖∗y+

+ δ+. (A.2.15)

THE PROOF OF TECHNICAL STATEMENTS IN CHAPTER 9 255

Since g̃(·; t+) is standard self-concordant due to Lemma 9.1.1, one has:

‖∇g̃(y+; t+)‖∗y+
≤ (1− ‖y+ − y‖y)−1 ‖∇g̃(y+; t+)‖∗y

= (1− ‖p‖y)−1 ‖∇g̃(y+; t+)‖∗y . (A.2.16)

Plugging (A.2.16) and (A.2.15) into (A.2.14) we obtain:

λ̄+ ≤ (1− δ+)−1
[
(1− ‖p‖y)−1 ‖∇g̃(y+; t+)‖∗y + δ+

]
. (A.2.17)

On the other hand, from (9.2.12), we have:

∇g̃(y+; t+) (9.2.12)= ∇g̃(y+; t+)−
[
∇g̃δ̄(y, t+) +∇2g̃δ̄(y; t+)(y+ − y)

]
=
[
∇g̃(y; t+)−∇g̃δ̄(y; t+)

]
[1]

+
{

[∇2g̃(y; t+)−∇2g̃δ̄(y; t+)](y+ − y)
}

[2] (A.2.18)

+
[
∇g̃(y+; t+)−∇g̃(y; t+)−∇2g̃(y; t+)(y+ − y)

]
[3].

By substituting t by t+ in (A.2.2), we obtain an estimate for [·][1] of (A.2.18)
as:

‖∇g̃(y; t+)−∇g̃δ̄(y; t+)‖∗y ≤ ‖x̄δ̄1 − x
∗
1‖x∗1 = δ1. (A.2.19)

Next, we consider the second term [·][2] of (A.2.18). It follows from (A.2.1)
that: [

(1− δ1)2 − 1
]
∇2g̃(y; t+) � ∇2g̃δ̄(y; t+)−∇2̃g(y; t+)

�
[
(1− δ1)−2 − 1

]
∇2g̃(y; t+). (A.2.20)

If we defineG :=
[
∇2g̃δ̄(y; t+)−∇2g̃(y; t+)

]
andH := ∇2g̃(y; t+)−1/2G∇2g̃(y; t+)−1/2

then:∥∥[∇2g̃(y; t)−∇2g̃δ̄(y; t+)](y+ − y)
∥∥∗
y

= ‖Gp‖∗y ≤ ‖H‖ ‖p‖y . (A.2.21)

By virtue of (A.2.20) and the condition δ1 < 1, one has:

‖H‖ ≤ max
{

1− (1− δ1)2, (1− δ1)−2 − 1
}

= (1− δ1)−2(2δ1 − δ2
1).

Hence, (A.2.21) leads to:∥∥[∇2g̃(y; t)−∇2g̃δ̄(y; t+)](y+ − y)
∥∥∗
y
≤ (1− δ1)−2(2δ1 − δ2

1) ‖p‖y . (A.2.22)

256 THE PROOF OF TECHNICAL STATEMENTS

Furthermore, since g̃(·; t) is standard self-concordant, similar to the proof of
[142, Theorem 4.1.14], the third term [·][3] of (A.2.18) is estimated as:∥∥∇g̃(y+; t+)−∇g̃(y; t+)−∇2g̃(y; t+)(y+−y)

∥∥∗
y
≤(1−‖p‖y)−1 ‖p‖2y . (A.2.23)

Now, we apply the triangle inequality ‖a+ b+ c‖∗y ≤ ‖a‖
∗
y + ‖b‖∗y + ‖c‖∗y to

(A.2.18) and then plugging (A.2.19), (A.2.22) and (A.2.23) into the resulting
inequality to obtain:

‖∇g̃δ̄(y+; t+)‖∗y ≤ δ1 + (1− δ1)−2(2δ1 − δ2
1) ‖p‖y + (1− ‖p‖y)−1 ‖p‖2y .

Finally, by substituting the last inequality into (A.2.17) we get (A.2.13).

Step 2. Next, we estimate (A.2.13) in terms of λ̄1 to obtain:

λ̄+ ≤ (1−δ+)−1
[(λ̄1

1−δ1−λ̄1

)2
+(2δ1−δ2)

(1−δ1)2

(λ̄1

1−δ1−λ̄1

)
+(1−δ1)δ1

1−δ1−λ̄1
+δ+

]
. (A.2.24)

Indeed, by using (A.2.4) with x = x̄δ̄1 and z = x∗1 and then (9.1.2) we have:

(1− δ1)2∇2g̃δ̄(y; t+) � ∇2g̃(y; t+) � (1− δ1)−2∇2g̃δ̄(y, t+).

These inequalities together with the definition of |‖ · ‖|y imply:

(1− δ1)|‖p‖|y ≤ ‖p‖y =
[
pT∇2g(y; t+)p

]1/2 ≤ (1− δ1)−1|‖p‖|y.

Moreover, since |‖p‖|y = |‖∇g̃δ̄(y; t+)‖|∗y = λ̄1 due to (9.2.12), the last inequality
is equivalent to:

‖p‖y ≤ (1− δ1)−1λ̄1. (A.2.25)
Note that the right-hand side of (A.2.13) is nondecreasing w.r.t. ‖p‖y in [0, 1).
Substituting (A.2.25) into (A.2.13) we finally obtain (A.2.24).

Step 3. We further estimate (A.2.24) in terms of ∆ and λ̄. First, we can easily
check that the right-hand side of (A.2.24) is nondecreasing w.r.t. λ̄1, δ1 and δ+.
Now, by using the definitions of ∆ and λ̄, it follows from Lemma A.2.1 c) that:

λ̄1 ≤ (1−∆)−1(λ̄+ ∆).

Since δ+ < 1 and δ1 + 2∆ + λ̄ < 1, substituting this inequality into (A.2.24),
we obtain

λ̄+ ≤ (1− δ+)−1
[
δ+ +

(λ̄+ ∆
1− δ1 − 2∆− λ̄

)2
+ (2δ1 − δ2

1)
(1− δ1)2

(λ̄+ ∆
1− δ1 − 2∆− λ̄

)
+δ1(1− δ1)(1−∆)

1− δ1 − 2∆− λ̄

]
. (A.2.26)

THE PROOF OF TECHNICAL STATEMENTS IN CHAPTER 9 257

The right-hand side of (A.2.26) is well-defined and nondecreasing w.r.t. all
variables.

Step 4. Finally, we facilitate the right-hand side of (A.2.26) to obtain (9.2.15).
Since λ̄ ≥ 0, we have:

(1− δ1)(1−∆) = [1− δ1 − 2∆− λ̄] + (λ̄+ ∆) + δ1∆

≤ [1− δ1 − 2∆− λ̄] + (1 + δ1)(λ̄+ ∆).

The last inequality implies:

δ1(1− δ1)(1−∆)
1− δ1 − 2∆− λ̄

≤ δ1 + δ1(1 + δ1)
(∆ + λ̄

1− δ1 − 2∆− λ̄

)
. (A.2.27)

Alternatively, since 0 ≤ δ1 < 1, we have 1 + δ1 ≤ 1
1−δ1 . Thus:

(1− δ1)−2(2δ1 − δ2
1) + δ1(1 + δ1) = δ1

[
(1− δ1)−2 + (1− δ1)−1 + (1 + δ1)

]
≤ δ1

[
(1− δ1)−2 + 2(1− δ1)−1] .

Substituting inequality (A.2.27) into (A.2.26) and then using the last inequality
and ξ := λ̄+∆

1−δ1−2∆−λ̄ , we obtain (9.2.15).

Step 5. The nondecrease of the right-hand side of (9.2.15) is obvious. The
inequality (9.2.16) follows directly from (9.2.15) by noting that λ̄ ≡ λ and
x̄δ̄ ≡ x∗.

Bibliography

[1] T. Alamo, J. Bravo, M. Redondo, and E. Camacho. “A set-membership
state estimation algorithm based on DC programming”. In: Automatica
44.1 (2008), pp. 216–224.

[2] J. Aldrich and R. Skelton. “Time-energy optimal control of hyper-
actuated mechanical systems with geometric path constraints”. In:
Decision and Control and 2005 European Control Conference. 2005,
pp. 8246–8253.

[3] d’A. Alexandre, B. Onureena, and E. Laurent. “First-order methods for
sparse covariance selection”. In: SIAM J. Matrix Anal. Appl. 30.1 (2008),
pp. 56–66.

[4] E. Allgower and K. Georg. “Continuation and path-following”. In: Acta
Numerica 2 (1992), pp. 1–64.

[5] J. Andersson, B. Houska, and M. Diehl. “Towards a Computer Algebra
System with Automatic Differentiation for use with Object-Oriented
modelling languages”. In: 3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, Oslo, Norway, October
3. 2010.

[6] G. Andrews. Foundations of Multithreaded, Parallel, and Distributed
Programming. University of Arizona: Addison-Wesley, 2000.

[7] P. Apkarian and H. Tuan. “Robust Control via Concave Minimization
- Local and Global Algorithms”. In: IEEE Trans. Autom. Control 45.2
(2000), pp. 299–305.

[8] I. Bauer, H. Bock, S. Körkel, and J. Schlöder. “Numerical methods for
optimum experimental design in DAE systems”. In: J. Comput. Appl.
Math. 120.1-2 (2000), pp. 1–15.

[9] A. Beck, A. Ben-Tal, and L. Tetruashvili. “A sequential parametric
convex approximation method with applications to nonconvex truss
topology design problems”. In: J. Global Optim. 47 (2010), pp. 29–51.

259

260 BIBLIOGRAPHY

[10] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems”. In: SIAM J. Imaging Sci. 2.1
(2009), pp. 183–202.

[11] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications. Ed. by Philadelphia.
SIAM, 2001.

[12] A. Ben-Tal and M. Teboulle. “Hidden convexity in some nonconvex
quadratically constrained quadratic programming”. In: Math. Program.
72 (1996), pp. 51–63.

[13] D. Bernstein. Matrix mathematics. Princeton University Press, 2005.
[14] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier

Methods (Optimization and Neural Computation Series). Athena
Scientific, 1996. isbn: 1886529043.

[15] D. Bertsekas. “Convexification Procedures and Decomposition Methods
for Nonconvex Optimization Problems”. In: J. Optim. Theory and Appl.
29.2 (1979), pp. 169–197.

[16] D. Bertsekas. “Incremental proximal methods for large scale convex
optimization”. In: Math. Program. 129.2 (2011), pp. 163–195.

[17] D. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation:
Numerical methods. Prentice Hall, 1989.

[18] D. Bertsekas and J. Tsitsiklis. “Some Aspects of Parallel and Distributed
Iterative Algorithms - A Survey”. In: Automatica 27.1 (1991), pp. 3–21.

[19] L. T. Biegler. Nonlinear Programming. MOS-SIAM Series on Optimiza-
tion. SIAM, 2010.

[20] L. Biegler. “Efficient solution of dynamic optimization and NMPC
problems”. In: Nonlinear Predictive Control. Ed. by F. Allgöwer and
A. Zheng. Vol. 26. Progress in Systems Theory. Basel Boston Berlin:
Birkhäuser, 2000, pp. 219–244.

[21] L. Biegler and J. Rawlings. “Optimization approaches to nonlinear model
predictive control”. In: Proc. 4th International Conference on Chemical
Process Control - CPC IV. Ed. by W. Ray and Y. Arkun. AIChE,
CACHE, 1991, pp. 543–571.

[22] D. Bienstock and G. Iyengar. “Approximating fractional packings and
coverings inO(1/ε) iterations”. In: SIAM J. Comput. 35.4 (2006), pp. 825–
854.

[23] J. Birge. “Decomposition and Partitioning Methods for Multistage
Stochastic Linear Programs”. In: Operations Research 33.5 (1985),
pp. 989–1007.

[24] V. Blondel and J. Tsitsiklis. “NP-hardness of some linear control design
problems”. In: SIAM J. Control Optim. 35.21 (1997), pp. 18–27.

BIBLIOGRAPHY 261

[25] H. G. Bock, E. Kostina, H. X. Phu, and R. Rannacher, eds. Modeling,
Simulation and Optimization of Complex Processes. Springer, 2003.

[26] H. Bock, M. Diehl, D. Leineweber, and J. Schlöder. “A direct multiple
shooting method for real-time optimization of nonlinear DAE processes”.
In: Nonlinear Predictive Control. Ed. by F. Allgöwer and A. Zheng.
Vol. 26. Progress in Systems Theory. Basel Boston Berlin: Birkhäuser,
2000, pp. 246–267.

[27] H. Bock and K. Plitt. “A multiple shooting algorithm for direct solution
of optimal control problems”. In: Proceedings 9th IFAC World Congress
Budapest. Pergamon Press, 1984, pp. 243–247.

[28] J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization
Problems. Springer, 2000.

[29] J. Bonnans. “Local Analysis of Newton-Type Methods for Variational
Inequalities and Nonlinear Programming”. In: Appl. Math. Optim 29
(1994), pp. 161–186.

[30] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[31] S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix
inequalities in system and control theory. Ed. by S. studies in applied
mathematics. Vol. 14. SIAM, 1994.

[32] S. Boyd, N. Parikh, E. Chu, and B. Peleato. “Distributed Optimization
and Statistics via Alternating Direction Method of Multipliers”. In:
Foundations and Trends in Machine Learning 3.1 (2011), pp. 1–122.

[33] J. Burke, A. Lewis, and M. Overton. “Optimization and Pseudospectra,
with Applications to Robust Stability”. In: SIAM J. Matrix Anal. Appl.
25(1) (2003), pp. 80–104.

[34] J. Burke, A. Lewis, and M. Overton. “Two numerical methods for
optimizing matrix stability”. In: Linear Algebra and Its Applications
351-352 (2002), pp. 117–145.

[35] L. A. Burke J.V. and M. Overton. “Optimizing Matrix Stability”. In:
Proceedings of the American Mathematical Society 129 (2001), pp. 1635–
1642.

[36] J. Camino, J. W. Helton, and R. E. Skelton. “Solving Matrix Inequalities
whos Unknowns are Matrices”. In: SIAM J. Optim. 17.1 (2006), pp. 1–36.

[37] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar. “Distributed model
predictive control”. In: Control Systems Magazine 22.1 (2002), pp. 44–52.

[38] Y. Cao, S. Li, L. Petzold, and R. Serban. “Adjoint Sensitivity Analysis
for Differential-Algebraic Equations: The Adjoint DAE System and its
Numerical Solution”. In: SIAM J. Sci. Comput. 24.3 (2003), pp. 1076–
1089.

262 BIBLIOGRAPHY

[39] G. Chen and M. Teboulle. “A proximal-based decomposition method for
convex minimization problems”. In: Math. Program. 64 (1994), pp. 81–
101.

[40] H. Chen and F. Allgöwer. “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability”. In: Automatica
34.10 (1998), pp. 1205–1218.

[41] H. Choset, W. Burgard, S. Hutchinson, G. Kantor, L. Kavraki, K. Lynch,
and S. Thrun. Principles of Robot Motion: Theory, Algorithms and
Implementation. MIT Press, 2005.

[42] G. Cohen. “Optimization by decomposition and coordination: A unified
approach”. In: IEEE Trans. Automat. Control AC-23.2 (1978), pp. 222–
232.

[43] A. Connejo, R. Mínguez, E. Castillo, and R. García-Bertrand. Decom-
position Techniques in Mathematical Programming: Engineering and
Science Applications. Springer-Verlag, 2006.

[44] R. Correa and H. R. C. “A global algorithm for nonlinear semidefinite
programming”. In: SIAM J. Optim. 15.1 (2004), pp. 303–318.

[45] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

[46] I. Daubechies, R. Devore, M. Fornasier, and C. Güntürk. “Iteratively
Reweighted Least Squares Minimization for Sparse Recovery”. In:
Communications on Pure and Applied Mathemathics 63 (2010), pp. 1–38.

[47] F. Debrouwere, W. V. Loock, G. Pipeleers, Q. Tran-Dinh, M. Diehl,
J. D. Schutter, and J. Swevers. “Time-optimal robot path following with
Cartesian acceleration constraints: a convex optimization approach.”
In: The 13th Mechatronics Forum International Conference. Vol. 2.
Mechatronics Forum International Conference. Linz, Austria, 2012,
pp. 469–475.

[48] P. Deuflhard. Newton Methods for Nonlinear Problems. New York:
Springer, 2004.

[49] O. Devolder, F. Glineur, and Y. Nesterov. “First-order methods of smooth
convex optimization with inexact oracle”. In: CORE Discussion papers
(2010).

[50] M. Diehl. “Real-Time Optimization for Large Scale Nonlinear Processes”.
PhD thesis. Universität Heidelberg, 2001. url: http://www.ub.uni-
heidelberg.de/archiv/1659/.

[51] M. Diehl, H. Bock, and E. Kostina. “An approximation technique for
robust nonlinear optimization”. In: Math. Program. 107 (2006), pp. 213–
230.

http://www.ub.uni-heidelberg.de/archiv/1659/
http://www.ub.uni-heidelberg.de/archiv/1659/

BIBLIOGRAPHY 263

[52] M. Diehl, H. Bock, and J. Schlöder. “A real-time iteration scheme for
nonlinear optimization in optimal feedback control”. In: SIAM J. Control
Optim. 43.5 (2005), pp. 1714–1736.

[53] M. Diehl, H. Bock, J. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer.
“Real-time optimization and Nonlinear Model Predictive Control of
processes governed by differential-algebraic equations”. In: J. Proc. Contr.
12.4 (2002), pp. 577–585.

[54] M. Diehl, H. J. Ferreau, and N. Haverbeke. “Nonlinear model predictive
control”. In: ed. by L. Magni, M. Raimondo, and F. Allgöwer. Vol. 384.
Lecture Notes in Control and Information Sciences. Springer, 2009.
Chap. Efficient Numerical Methods for Nonlinear MPC and Moving
Horizon Estimation, pp. 391–417.

[55] M. Diehl, R. Findeisen, F. Allgöwer, H. Bock, and J. Schlöder. “Nominal
Stability of the Real-Time Iteration Scheme for Nonlinear Model
Predictive Control”. In: IEE Proc.-Control Theory Appl. 152.3 (2005),
pp. 296–308.

[56] M. Diehl, F. Glineur, E. Jarlebring, and W. Michiels. Recent Advances
in Optimization and its Applications in Engineering. Springer, 2010.

[57] M. Diehl, F. Jarre, and C. Vogelbusch. “Loss of superlinear convergence
for an SQP-type method with conic constraints”. In: SIAM J. Optim.
16.4 (2006), pp. 1201–1210.

[58] M. Diehl, A. Walther, H. Bock, and E. Kostina. “An adjoint-based SQP
algorithm with quasi-Newton Jacobian updates for inequality constrained
optimization”. In: Optim. Methods Softw. 25.4 (2010), pp. 531–552.

[59] E. Dolan and J. Moré. “Benchmarking optimization software with
performance profiles”. In: Math. Program. 91 (2002), pp. 201–213.

[60] A. L. Dontchev and T. R. Rockafellar. “Characterizations of strong
regularity for variational inequalities over polyhedral convex sets”. In:
SIAM J. Optim. 6.4 (1996), pp. 1087–1105.

[61] J. Duchi, A. Agarwal, and M. Wainwright. “Dual Averaging for
Distributed Optimization: Convergence Analysis and Network Scaling”.
In: IEEE Trans. Autom. Control 57.3 (2012), pp. 592–606.

[62] J. Eckstein. “Parallel alternating direction multiplier decomposition of
convex programs”. In: J. Optim. Theory Appl. 80.1 (1994), pp. 39–62.

[63] J. Eckstein and D. Bertsekas. “On the Douglas - Rachford splitting
method and the proximal point algorithm for maximal monotone
operators”. In: Math. Program. 55 (1992), pp. 293–318.

[64] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities
and complementarity problems. Ed. by N. York. Vol. 1-2. Springer-Verlag,
2003.

264 BIBLIOGRAPHY

[65] B. Fares, D. Noll, and P. Apkarian. “Robust Control via Sequential
Semidefinite Programming”. In: SIAM J. Control Optim. 40.6 (2002),
pp. 1791–1820.

[66] A. Fiacco. Introduction to sensitivity and stability analysis in nonlinear
programming. New York: Academic Press, 1983.

[67] A. Fiacco and G. P. McCormick. “Nonlinear Programming: Sequential
Unconstrained Minimization Techniques”. In: SIAM publications (1990).

[68] R. Findeisen, F. Allgöwer, and L. Biegler, eds. Assessment and Future
Directions of Nonlinear Model Predictive Control. Lecture Notes in
Control and Information Sciences. Springer, 2006.

[69] R. Fletcher. Practical Methods of Optimization. 2nd. Chichester: Wiley,
1987.

[70] C. Fleury. “Sequential convex programming for structural optimization
problems”. In: Optimization of large structural systems; Proceedings
of the NATO/DFG Advanced Study Institute. Vol. 1. Berchtesgaden,
Germany, 1991, pp. 531–533.

[71] R. Freund and F. Jarre. A sensitivity analysis and a convergence result
for a sequential semidefinite programming method. Tech. rep. Murray
Hill: Bell Laboratories, 2003.

[72] R. Freund, F. Jarre, and C. Vogelbusch. “Nonlinear semidefinite
programming: sensitivity, convergence, and an application in passive
reduced-order modeling”. In: Math. Program. Ser. B. 109 (2007),
pp. 581–611.

[73] M. Fukushima, M. Haddou, N. V. Hien, J. Strodiot, T. Sugimoto, and
E. Yamakawa. “A parallel descent algorithm for convex programming”.
In: Comput. Optim. Appl. 5.1 (1996), pp. 5–37.

[74] J. Gauvin and R. Janin. “Directional behaviour of optimal solutions in
nonlinear mathematical programming”. In: Mathematics of Operations
Research 13.4 (1988), pp. 629–649.

[75] A. Geoffrion. “Generalized Benders Decomposition”. In: Journal of
Optimization Theory and Applications 10 (1972), pp. 237–260.

[76] K. Goh. “Robust control synthesis via bilinear matrix inequalities”. PhD
Thesis. Los Angeles, CA: University of Southern California, 1995.

[77] D. Goldfarb and S. Ma. “Fast Multiple Splitting Algorithms for Convex
Optimization”. In: SIAM J. Optim. 22.2 (2012), pp. 533–556.

[78] J. Gondzio and A. Grothey. “Parallel Processing and Applied Mathe-
matics PPAM 2005”. In: ed. by R. Wyrzykowski, J. Dongarra, N. Meyer,
and J. Wasniewski. Lecture Notes in Computer Science, 3911. Berlin:
Springer-Verlag, 2006. Chap. Direct Solution of Linear Systems of Size
109 Arising in Optimization with Interior Point Methods, pp. 513–525.

BIBLIOGRAPHY 265

[79] C. Gonzaga. “Path-following methods for linear programming”. In: SIAM
Review 34.2 (1992), pp. 167–224.

[80] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel
Computing. 2nd ed. Addison–Wesley, 2003.

[81] M. Grant. “Disciplined Convex Programming”. PhD thesis. Stanford
University, 2004.

[82] A. Griewank. Evaluating Derivatives, Principles and Techniques of
Algorithmic Differentiation. Frontiers in Appl. Math. 19. Philadelphia:
SIAM, 2000.

[83] A. Griewank and P. Toint. “Partitioned variable metric updates for
large structured optimization problems”. In: Numerische Mathematik 39
(1982), pp. 119–137.

[84] A. Griewank and A. Walther. “On Constrained Optimization by Adjoint
based quasi-Newton Methods”. In: Optim. Method Softw. 17 (2002),
pp. 869 –889.

[85] J. Guddat, F. G. Vasquez, and H. Jongen. Parametric Optimization:
Singularities, Pathfollowing and Jumps. Stuttgart: Teubner, 1990.

[86] S. Gumussoy, D. Henrion, M. Millstone, and M. Overton. “Multiobjective
Robust Control with HIFOO 2.0.” In: Proceedings of the 6th IFAC
Symposium on Robust Control Design. Haifa, Israel, 2009.

[87] A. Hamdi. “Decomposition for structured convex programs with smooth
multiplier methods”. In: Applied Mathematics and Computation 169
(2005), pp. 218–241.

[88] A. Hamdi. “Two-level primal-dual proximal decomposition technique to
solve large-scale optimization problems”. In: Appl. Math. Comput. 160
(2005), pp. 921–938.

[89] S. Han and G. Lou. “A Parallel Algorithm for a Class of Convex
Programs”. In: SIAM J. Control Optim. 26 (1988), pp. 345–355.

[90] L. Hans-Jakob and D. Jörg. “Convex risk measures for portfolio
optimization and concepts of flexibility”. In: Math. Program. 104.2-3
(2005), pp. 541–559.

[91] L. Hariharan and F. Pucci. “Decentralized resource allocation in dynamic
networks of agents”. In: SIAM J. Optim. 19.2 (2008), pp. 911–940.

[92] A. Hassibi, J. How, and S. Boyd. “A path following method for
solving BMI problems in control”. In: Proceedings of American Control
Conference. Vol. 2. 1999, pp. 1385–1389.

[93] B. He, M. Tao, M. Xu, and X. Yuan. “Alternating directions based
contraction method for generally separable linearly constrained convex
programming problems”. In: Optimization (to appear) (2011).

266 BIBLIOGRAPHY

[94] B. He, M. Xu, and X. Yuan. “Solving large-scale least squares covariance
matrix problems by alternating direction methods”. In: SIAM J. Matrix
Analy. Appli. 32 (2011), pp. 136–152.

[95] B. He, H. Yang, and S. Wang. “Alternating directions method with
self-adaptive penalty parameters for monotone variational inequalities”.
In: J. Optim. Theory Appl. 106 (2000), pp. 349–368.

[96] A. Helbig, O. Abel, and W. Marquardt. “Model Predictive Control for
On-line Optimization of Semi-batch Reactors”. In: Proc. Amer. Contr.
Conf. Philadelphia, 1998, pp. 1695–1699.

[97] D. Henrion, J. Loefberg, M. Kocvara, and M. Stingl. “Solving polynomial
static output feedback problems with PENBMI”. In: Proc. the IEEE
Conf. Decision Control and Europ. Control Conf. Sevilla, Spain, 2005.

[98] D. Hertog. “Interior point approach to linear, quadratic and convex
programming: Algorithms and complexity”. PhD Thesis. Netherland:
Delf University, 1992.

[99] C. Hol and C. Scherer. “Positive Polynomials in Control”. In: ed. by D.
Henrion and A. Garulli. Springer-Verlag, 2005. Chap. A sum-of-squares
approach to fixed-order H-infinity synthesis, pp. 45–71.

[100] K. Holmberg. “Experiments with primal-dual decomposition and
subgradient methods for the uncapacitated facility location problem”.
In: Optimization 49.5–6 (2001), pp. 495–516.

[101] K. Holmberg and K. Kiwiel. “Mean value cross decomposition for
nonlinear convex problem”. In: Optim. Methods and Softw. 21.3 (2006),
pp. 401–417.

[102] B. Houska. “Robust Optimization of Dynamic Systems”. (ISBN: 978-94-
6018-394-2). PhD thesis. Katholieke Universiteit Leuven, 2011.

[103] IBM Corp. IBM ILOG CPLEX V12.1, User’s Manual for CPLEX. 2009.
[104] A. Jadbabaie and J. Hauser. “On the stability of receding horizon control

with a general terminal cost”. In: IEEE Trans. Autom. Control 5 (2005),
pp. 674–678.

[105] X. J. Jakovetić D. and J. Moura. “Fast distributed gradient methods”.
In: (2011), pp. 1–32. url: http://arxiv.org/abs/1112.2972.

[106] F. Jarre. On an approximation of the Hessian of the Lagrangian. 2003.
url: http://www.optimization-online.org/DB_HTML/2003/12/800.
html.

[107] B. Johansson. “On Distributed Optimization in Networked Systems”.
PhD Thesis. Stockholm, Sweden: Automatic Control Laboratory, School
of Electrical Engineering, Royal Institute of Technology (KTH), 2008.

http://arxiv.org/abs/1112.2972
http://www.optimization-online.org/DB_HTML/2003/12/800.html
http://www.optimization-online.org/DB_HTML/2003/12/800.html

BIBLIOGRAPHY 267

[108] B. Johansson and M. Johansson. “Distributed non-smooth resource
allocation over a network”. In: Proc. IEEE conference on Decision and
Control. 2009, pp. 1678–1683.

[109] B. Johansson, M. Rabi, and M. Johansson. “A randomized incremental
subgradient method for distributed optimization in networked systems”.
In: SIAM J. Optim. 20.3 (2009), pp. 1157–1170.

[110] C. Kanzow, C. Nagel, H. Kato, and M. Fukushima. “Successive
linearization methods for nonlinear semidefinite programs”. In: Comput.
Optim. Appl. 31 (2005), pp. 251–273.

[111] H. Kato and M. Fukushima. “An SQP-type algorithm for nonlinear
second-order cone programs”. In: Optimization Letters 1 (2007), pp. 129–
144.

[112] D. Klatte and B. Kummer. Nonsmooth Equations in Optimization:
Regularity, Calculus, Methods and Applications. Dordrecht: Kluwer
Academic Publishers, 2002.

[113] M. Kojima, N. Megiddo, S. Mizuno, and et al. Horizontal and vertical
decomposition in interior point methods for linear programs. Technical
Report. Tokyo: Information Sciences, Tokyo Institute of Technology,
1993.

[114] N. Komodakis, N. Paragios, and G. Tziritas. “MRF Energy Minimization
& Beyond via Dual Decomposition”. In: IEEE Trans. Pattern Anal.
Mach. Intell. (2010).

[115] S. Kontogiorgis, R. Leone, and R. Meyer. “Alternating direction splittings
for block angular parallel optimization”. In: J. Optim. Theory Appl. 90.1
(1996), pp. 1–29.

[116] M. Kočvara, F. Leibfritz, M. Stingl, and D. Henrion. “A nonlinear SDP
algorithm for static output feedback problems in COMPLeib”. In: Proc.
IFAC World Congress. Prague, Czech Rep., 2005.

[117] F. Leibfritz. “A LMI-based algorithm for designing suboptimal static
H2/H∞ output feedback controllers”. In: SIAM J. Control Optim. 39.6
(2001), pp. 1711–1735.

[118] F. Leibfritz. COMPleib: Constraint matrix optimization problem library -
a collection of test examples for nonlinear semidefinite programs, control
system design and related problems. Tech. Rep. Trier, Germany: Dept.
Math., Univ. Trier, 2004.

[119] F. Leibfritz and W. Lipinski. Description of the benchmark examples in
COMPleib 1.0. Tech. Rep. Trier, Germany: Dept. Math., Univ. Trier,
2003.

268 BIBLIOGRAPHY

[120] F. Leibfritz and J. Maruhn. “A successive SDP-NSDP approach to a
robust optimization problem in finance”. In: Comput. Optim. Appl. 44.3
(2009), pp. 443–466.

[121] F. Leibfritz and E. Mostafa. “An Interior Point Constrained Trust Region
Method for a Special Class of Nonlinear Semidefinite Programming
Problems”. In: SIAM J. Optim. 12.4 (2002), pp. 1048–1074.

[122] A. Lenoir and P. Mahey. “Accelerating convergence of a separable
augmented Lagrangian algorithm”. In: Tech. Report., LIMOS/RR-07-14
(2007), pp. 1–34.

[123] A. S. Lewis and S. J. Wright. A proximal method for composite
minimization. 2008. url: http://arxiv.org/abs/0812.0423.

[124] J. Löfberg. “YALMIP: A Toolbox for Modeling and Optimization in
MATLAB”. In: Proceedings of the CACSD Conference. Taipei, Taiwan,
2004.

[125] C. M. Low S. H. and J. C. Doyle. “Cross-Layer Congestion Control,
Routing and Scheduling Design in Ad Hoc Wireless Networks”. In:
INFOCOM 2006 - 25th IEEE International Conference on Computer
Communications. 2006, pp. 1–13.

[126] R. Madan. “Distributed algorithms for maximum lifetime routing in
wireless sensor networks”. In: IEEE Trans. Wirel. Commun. 5.8 (2006),
pp. 2185–2193.

[127] B. R. Marks and G. P. Wright. “A General Inner Approximation
Algorithm for Nonconvex Mathematical Programs”. In: Operations
Research 26.4 (1978), pp. 681–683.

[128] J. Mattingley, Y. Wang, and S. Boyd. “Code Generation for Receding
Horizon Control”. In: Proceedings of the IEEE International Symposium
on Computer-Aided Control System Design. Yokohama, Japan, 2010.

[129] D. Q. Mayne. “Nonlinear model predictive control: Challenges and
opportunities”. In: Nonlinear Predictive Control. Ed. by F. Allgöwer
and A. Zheng. Vol. 26. Progress in Systems Theory. Basel Boston Berlin:
Birkhäuser, 2000, pp. 23–44.

[130] S. Mehrotra. “On the Implementation of a Primal-Dual Interior Point
Method”. In: SIAM J. Optim. 2.4 (1992), pp. 575–601.

[131] S. Mehrotra and M. Ozevin. “Decomposition Based Interior Point
Methods for Two-Stage Stochastic Convex Quadratic Programs with
Recourse”. In: Operation Research 57.4 (2009), pp. 964–974.

[132] R. R. Meyer. “Sufficient conditions for the convergence of monotonic
mathematical programming algorithms”. In: Journal of Computer and
System Sciences 12 (1976), pp. 108–121.

http://arxiv.org/abs/0812.0423

BIBLIOGRAPHY 269

[133] I. Necoara, C. Savorgnan, Q. Tran-Dinh, J. A. K. Suykens, and M.
Diehl. “Distributed Nonlinear Optimal Control Using Sequential Convex
Programming and Smoothing Techniques”. In: Proceedings of the 48th
IEEE Conference on Decision and Control. Shanghai, China, 2009.

[134] I. Necoara and J. Suykens. “Applications of a smoothing technique to
decomposition in convex optimization.” In: IEEE Trans. Autom. Control
53.11 (2008), pp. 2674–2679.

[135] I. Necoara and J. Suykens. “Interior-point Lagrangian decomposition
method for separable convex optimization”. In: J. Optim. Theory and
Appl. 143.3 (2009), pp. 567–588.

[136] A. Nedíc and A. Ozdaglar. “Distributed subgradient methods for multi-
agent optimization”. In: IEEE Trans. Autom. Control 54 (2009), pp. 48–
61.

[137] Y. Nesterov. “A method for unconstrained convex minimization
problem with the rate of convergence O(1/k2)”. In: Doklady AN SSSR
269.translated as Soviet Math. Dokl. (1983), pp. 543–547.

[138] Y. Nesterov. “Barrier subgradient method”. In: Math. Program., Ser. B
127 (2011), pp. 31–56.

[139] Y. Nesterov. “Dual extrapolation and its applications to solving
variational inequalities and related problems”. In: Math. Program. 109.2-3
(2007), pp. 319–344.

[140] Y. Nesterov. “Excessive gap technique in nonsmooth convex minimiza-
tion”. In: SIAM J. Optim. 16.1 (2005), pp. 235–249.

[141] Y. Nesterov. “Gradient methods for minimizing composite objective
function”. In: CORE Discussion paper 76 (2007).

[142] Y. Nesterov. Introductory lectures on convex optimization: a basic course.
Vol. 87. Applied Optimization. Kluwer Academic Publishers, 2004.

[143] Y. Nesterov. “Modified Gauss-Newton scheme with worst case guarantees
for global performance”. In: Optim. Method Softw. 22.3 (2007), pp. 469–
483.

[144] Y. Nesterov. “Primal-dual subgradient methods for convex problems”.
In: Math. Program. 120.1 (2009), pp. 221–259.

[145] Y. Nesterov. “Smooth minimization of non-smooth functions”. In: Math.
Program. 103.1 (2005), pp. 127–152.

[146] Y. Nesterov and A. Nemirovski. Interior-point Polynomial Algorithms
in Convex Programming. Society for Industrial Mathematics, 1994.

[147] G. Neveen and K. Jochen. “Faster and simpler algorithms for
multicommodity flow and other fractional packing problems”. In: SIAM
J. Comput. 37.2 (2007), pp. 630–652.

270 BIBLIOGRAPHY

[148] J. Nocedal and S. Wright. Numerical Optimization. 2nd ed. Springer
Series in Operations Research and Financial Engineering. Springer, 2006.

[149] T. Ohtsuka. “A Continuation/GMRES Method for Fast Computation
of Nonlinear Receding Horizon Control”. In: Automatica 40.4 (2004),
pp. 563–574.

[150] R. Orsi, U. Helmke, and J. Moore. “A Newton-like method for solving
rank constrained linear matrix inequalities”. In: Automatica 42.11 (2006),
pp. 1875–1882.

[151] E. Ostertag. “An improved path-following method for mixed H2/H∞
controller design”. In: IEEE Trans. Autom. Control 53.8 (2008), pp. 1967–
1971.

[152] A. Ostrowski. Solutions of Equations and Systems of Equations. New
York: Academic Press, 1966.

[153] J. Outrata. “Optimality Conditions for a Class of Mathematical Programs
with Equilibrium Constraints”. In: Math. Oper. Res. 24.3 (1999), pp. 627–
644.

[154] D. Palomar and M. Chiang. “A Tutorial on Decomposition Methods
for Network Utility Maximization”. In: IEEE J. Selected Areas in
Communications 24.8 (2006), pp. 1439–1451.

[155] F. Pfeifer and R. Johanni. “A concept for manipulator trajectory
planning”. In: IEEE Journal of Robotics and Automation RA-3.2 (1987),
pp. 115–123.

[156] D. Pham and H. L. Thi. “A DC optimization algorithms for solving the
trust region subproblem”. In: SIAM J. Optim. 8 (1998), pp. 476–507.

[157] P. Purkayastha and J. Baras. “An optimal distributed routing algorithm
using dual decomposition techniques”. In: Commun. Inf. Syst. 8.3 (2008),
pp. 277–302.

[158] J. Rawlings, E. Meadows, and K. Muske. “Nonlinear model predictive
control: A tutorial and survey”. In: Proc. Int. Symp. Adv. Control of
Chemical Processes, ADCHEM. Kyoto, Japan, 1994.

[159] J. Renegar. A Mathematical View of Interior-Point Methods in Convex
Optimization. Vol. 2. MPS/SIAM Series on Optimization. SIAM, 2001.

[160] S. M. Robinson. “Strongly Regular Generalized Equations”. In: Mathe-
matics of Operations Research, Vol. 5, No. 1 (Feb., 1980), pp. 43-62 5
(1980), pp. 43–62.

[161] R. T. Rockafellar. Convex Analysis. Vol. 28. Princeton Mathematics
Series. Princeton University Press, 1970.

[162] R. Rockafellar and R. J.-B. Wets. Variational Analysis. Ed. by N. York.
Springer-Verlag, 1997.

BIBLIOGRAPHY 271

[163] C. Roos, T. Terlaky, and J.-P. Vial. Interior Point Methods for Linear
Optimization. Heidelberg/Boston: Springer Science, 2006.

[164] A. Ruszczyński. “On convergence of an augmented Lagrangian decom-
position method for sparse convex optimization”. In: Mathematics of
Operations Research 20 (1995), pp. 634–656.

[165] S. Samar, S. Boyd, and D. Gorinevsky. “Distributed Estimation via Dual
Decomposition”. In: Proceedings European Control Conference (ECC).
Kos, Greece, 2007, pp. 1511–1516.

[166] C. Savorgnan and M. Diehl. Control benchmark of a hydro power plant.
Tech. Report. Optimization in Engineering Center, KU Leuven, 2010.
url: http:/homes.esat.kuleuven.be/~mdiehl.

[167] S. Schlenkrich, A. Griewank, and A. Walther. “On the local convergence of
adjoint Broyden methods”. In: Math. Program. 121.2 (2010), pp. 221–247.

[168] G. Schnitger. Parallel and Distributed Algorithms. Institut für Informatik.
2006.

[169] R. Serban and A. Hindmarsh. “CVODES: the Sensitivity-Enabled ODE
Solver in SUNDIALS”. In: Proceedings of IDETC/CIE 2005. 2005.

[170] A. Shapiro. “First and second order analysis of nonlinear semidefinite
programs”. In: Math. Program. 77.1 (1997), pp. 301–320.

[171] M. Shida. “An interior-point smoothing technique for Lagrangian
relaxation in large-scale convex programming”. In: Optimization 57.1
(2008), pp. 183–200.

[172] Z. Shiller and H.-H. Lu. “Computation of path constrained time optimal
motions with dynamic singularities”. In: Transactions of the ASME,
Journal of Dynamic Systems, Measurement, and Control 114 (1992),
pp. 34–40.

[173] M. Shugen and W. Mitsuru. “Time-optimal control of kinematically
redundant manipulators with limit heat characteristics of actuators”. In:
Advanced Robotics 16.8 (2002), pp. 735–749.

[174] M. Signoretto, Q. Tran-Dinh, L. De-Lathauwer, and J. Suykens. Learning
with Tensors: a framework based on convex optimization and spectral
regularization. Technical Report 11-129. (Submitted for publication).
ESAT SCD/SISTA, K.U. Leuven, 2011.

[175] A. Smola, S. V. N. Vishwanathan, and Q. V. Le. “Bundle methods
for machine learning”. In: Advances in Neural Information Processing
Systems 20. Ed. by D. Koller and Y. Singer. Cambridge MA, MIT Press,
2007.

[176] J. Spingarn. “Applications of the method of partial inverses to convex
programming: Decomposition”. In: Math. Program. Ser. A 32 (1985),
pp. 199–223.

http:/homes.esat.kuleuven.be/~mdiehl

272 BIBLIOGRAPHY

[177] B. Sriperumbudur and G. Lanckriet. “On the convergence of the concave-
convex procedure”. In: Neural Information Processing Systems, NIPS
(2009).

[178] G. Stephanopoulos and W. A.W. “The use of Hestenes’ method of
multipliers to resolve dual gaps in engineering system optimization”. In:
J. Optim. Theory and Appl. 15 (1975), pp. 285–309.

[179] M. Stingl, M. Kocvara, and G. Leugering. “A Sequential Convex
Semidefinite Programming Algorithm for Multiple-Load Free Material
Optimization”. In: SIAM J. Optim. 20.1 (2009), pp. 130–155.

[180] F. Sturm. “Using SeDuMi 1.02: A Matlab toolbox for optimization over
symmetric cones”. In: Optim. Methods Software 11-12 (1999), pp. 625–
653.

[181] D. Sun. “The strong second order sufficient condition and constraint
non-degeneracy in nonlinear semidefinite programming and their
implications”. In: Mathematics of Operation Research 31.4 (2006),
pp. 761–776.

[182] K. Svanberg. “The method of moving asymptotes - a new method for
structural optimization”. In: Int. J. Numer. Meths. Engng. 24 (1987),
pp. 359–373.

[183] A. Tanikawa and H. Mukai. “A new technique for nonconvex primal-dual
decomposition of a large-scale separable optimization problem”. In: IEEE
Trans. Automatic Control 30.2 (1985), pp. 133–143.

[184] P. Tatjewski. “New Dual-Type Decomposition Algorithm for Nonconvex
Separable Optimization Problems”. In: Automatica 25.2 (1989), pp. 233–
242.

[185] P. Tatjewski and B. Engelmann. “Two-Level Primal-Dual Decomposition
Technique for Large-Scale Nonconvex Optimization Problems with
Constraints”. In: J. Optim. Theory and Appl. 64.1 (1990), pp. 183–205.

[186] J. Thevenet, D. Noll, and P. Apkarian. “Nonlinear spectral SDP method
for BMI-constrained problems: applications to control design”. In:
Informatics in Control, Automation and Robotics 1 (2006), pp. 61–72.

[187] Q. Tran-Dinh and M. Diehl. “An application of sequential convex
programming to time optimal trajectory planning for a car motion”.
In: Proceedings of the 48th IEEE Conference on Decision and Control.
Shanghai, China, 2009, pp. 4366–4371. doi: 10 . 1109 / CDC . 2009 .
5399823.

[188] Q. Tran-Dinh and M. Diehl. “Local Convergence of Sequential Convex
Programming for Nonconvex Optimization”. In: Recent advances in
optimization and its application in engineering. Ed. by G. F. J. E. Diehl
M. and W. Michiels. Springer-Verlag, 2010, pp. 93–103.

http://dx.doi.org/10.1109/CDC.2009.5399823
http://dx.doi.org/10.1109/CDC.2009.5399823

BIBLIOGRAPHY 273

[189] Q. Tran-Dinh and M. Diehl. Proximal methods for minimizing the sum
of a convex function and a composite function. Tech. Report. Belgium:
KU Leuven, OPTEC and ESAT/SCD, 2011.

[190] Q. Tran-Dinh and M. Diehl. Sequential Convex Programming Methods
for Solving Nonlinear Optimization Problems with DC constraints. Tech.
Report. Belgium: ESAT/SCD and OPTEC, KU Leuven, 2009. url:
http://arxiv.org/abs/1107.5841.

[191] Q. Tran-Dinh, S. Gumussoy, W. Michiels, and M. Diehl. “Combining
convex-concave decompositions and linearization approaches for solving
BMIs, with application to static output feedback”. In: IEEE Trans.
Autom. Control 57.6 (2012), pp. 1377–1390.

[192] Q. Tran-Dinh, W. Michiels, and M. Diehl. “An inner convex approx-
imation algorithm for BMI optimization and applications in control”.
In: Proc. of The 52th IEEE Conference on Decision and Control. 2012,
(accepted).

[193] Q. Tran-Dinh, I. Necoara, and M. Diehl. “Fast Inexact Decomposition Al-
gorithms for Large-Scale Separable Convex Optimization”. In: Submitted
to J. Optim. Theory Appl. (2012), pp. 1–29.

[194] Q. Tran-Dinh, I. Necoara, and M. Diehl. “Path-Following Gradient-
Based Decomposition Algorithms For Separable Convex Optimization”.
In: (2012). (Submitted for publication).

[195] Q. Tran-Dinh, I. Necoara, C. Savorgnan, and M. Diehl. “An Inexact
Perturbed Path-Following Method for Lagrangian Decomposition in
Large-Scale Separable Convex Optimization”. In: SIAM J. Optim. under
revision (2012).

[196] Q. Tran-Dinh, C. Savorgnan, and M. Diehl. “Adjoint-based Predictor-
Corrector Sequential Convex Programming for Parametric Nonlinear
Optimization”. In: SIAM J. Optim. 22.4 (2012), pp. 1258–1284.

[197] Q. Tran-Dinh, C. Savorgnan, and M. Diehl. “Combining Lagrangian
Decomposition and Excessive Gap Smoothing Technique for Solving
Large-Scale Separable Convex Optimization Problems”. In: Comput.
Optim. Appl. under revision (2011), pp. 1–29.

[198] Q. Tran-Dinh, C. Savorgnan, and M. Diehl. “Real-Time Sequential
Convex Programming for Nonlinear Model Predictive Control and
Application to a Hydro-Power Plant”. In: Proc. of the 50th IEEE
Conference on Decision and Control (CDC) and the European Control
Conference (ECC). 2011, pp. 5905–5910.

[199] Q. Tran-Dinh, C. Savorgnan, and M. Diehl. “Real-Time Sequential
Convex Programming for Optimal Control Applications”. In: Modeling,
Simulation and Optimization of Complex Processes. Ed. by P. H. R. R.
Bock H. and J. Schlöder. Springer-Verlag, 2009, pp. 91–101.

http://arxiv.org/abs/1107.5841

274 BIBLIOGRAPHY

[200] J. Tropp. “Just relax: convex programming methods for identifying sparse
signals in noise”. In: IEEE Trans. Inf. Theory 52.3 (2006), pp. 1030–1051.

[201] P. Tseng. “Alternating projection-proximal methods for convex pro-
gramming and variational inequalities”. In: SIAM J. Optim. 7.4 (1997),
pp. 951–965.

[202] P. Tsiaflakis, M. Diehl, and M. Moonen. “Distributed spectrum
management algorithms for multi-user DSL networks”. In: IEEE Trans.
Signal Processing 56.10 (2008), pp. 4825–4843.

[203] P. Tsiaflakis, I. Necoara, J. Suykens, and M. Moonen. “Improved
Dual Decomposition Based Optimization for DSL Dynamic Spectrum
Management”. In: IEEE Transactions on Signal Processing 58.4 (2010),
pp. 2230–2245.

[204] R. Tütünkü, K. Toh, and M. Todd. “Solving semidefinite-quadratic-linear
programs using SDPT3”. In: Math. Program. 95 (2003), pp. 189–217.

[205] J. Vanbiervliet, B. Vandereycken, W. Michiels, S. Vandewalle, and M.
Diehl. “The smoothed spectral abscissa for robust stability optimization”.
In: SIAM J. Optim. 20.1 (2009), pp. 156–171.

[206] D. Vania. “Finding Approximate Solutions for Large Scale Linear
Programs”. PhD Thesis, No 18188. ETH Zurich, 2009.

[207] A. Venkat, I. Hiskens, J. Rawlings, and S. Wright. “Distributed MPC
strategies with application to power system automatic generation control”.
In: IEEE Trans. Control Syst. Technol. 16.6 (2008), pp. 1192–126.

[208] A. Venkat. “Distributed Model Predictive Control: Theory and Applica-
tions”. PhD thesis. University of Wisconsin-Madison, 2006.

[209] D. Verscheure, B. Demeulenaere, J. Swevers, J. D. Schutter, and M. Diehl.
“Time-Energy Optimal Path Tracking for Robots: a Numerically Efficient
Optimization Approach”. In: Proceedings of the IEEE International
Workshop on Advanced Motion Control, Trento, Italy. 2008.

[210] A. Wächter and L. Biegler. “On the Implementation of a Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear
Programming”. In: Math. Program. 106.1 (2006), pp. 25–57.

[211] E. Wei, A. Ozdaglar, and A.Jadbabaie. “A Distributed Newton Method
for Network Utility Maximization”. In: (2011). url: http://web.mit.
edu/asuman/www/publications.htm.

[212] N. R. Wright S. J. and M. Figueiredo. “Sparse Reconstruction by
Separable Approximation”. In: IEEE Trans. Signal Process. 57 (2009),
pp. 2479–2493.

[213] S. Wright. Primal-Dual Interior-Point Methods. Philadelphia: SIAM
Publications, 1997.

http://web.mit.edu/asuman/www/publications.htm
http://web.mit.edu/asuman/www/publications.htm

BIBLIOGRAPHY 275

[214] L. Xiao, M. Johansson, and S. Boyd. “Simultaneous routing and resource
allocation via dual decomposition”. In: IEEE Trans. Commun. 52.7
(2004), pp. 1136–1144.

[215] M. Yamashita, K. Fujisawa, and M. Kojima. “Implementation and
evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0)”. In:
Optim. Method Softw. 18 (2003), pp. 491–505.

[216] W. Zangwill. Nonlinear Programming. Ed. by N. J. E. Cliffs. Prentice
Hall, 1969.

[217] V. Zavala and M. Anitescu. “Real-Time Nonlinear Optimization as a
Generalized Equation”. In: SIAM J. Control Optim. 48.8 (2010), pp. 5444–
5467.

[218] G. Zhao. “A Lagrangian dual method with self-concordant barriers for
multistage stochastic convex programming”. In: Math. Progam. 102
(2005), pp. 1–24.

[219] G. Zhao. “A Log-barrier with Benders decomposition for solving two-
stage stochastic programs”. In: Math. Program. 90 (2001), pp. 507–536.

[220] G. Zhao. “Interior point methods with decomposition for solving large-
scale linear programs”. In: J. Optim. Theory Appl. 102 (1999), pp. 169–
192.

[221] C. Zillober, K. Schittkowski, and K. Moritzen. “Very large scale
optimization by sequential convex programming”. In: Optimization
Methods and Software 19 (2004), pp. 103–120.

Publications by the author
contains in the thesis

Articles in international journals

1. Q. Tran Dinh, I. Necoara and M. Diehl: Path-Following Gradient-Based
Decomposition Algorithms for Separable Convex Optimization. Submitted
to J. Global Optim., pp. 1–19, 2012.

2. Q. Tran Dinh, I. Necoara and M. Diehl: Fast Inexact Decomposition
Algorithm for Large-Scale Separable Convex Optimization. Submitted to
J. Optim. Theory Appl., pp. 1–29, 2012.

3. Q. Tran Dinh, C. Savorgnan and M. Diehl: Combining Lagrangian
Decomposition and Excessive Gap Smoothing Technique for Solving Large-
Scale Separable Convex Optimization Problems. Comput. Optim. Appl.,
2011 (under revision).

4. Q. Tran Dinh, I. Necoara, C. Savorgnan and M. Diehl: An inexact
perturbed path-following method for Lagrangian decomposition in large-
scale separable convex optimization. SIAM J. Optim., 2012 (accepted for
publication).

5. Q. Tran Dinh, C. Savorgnan and M. Diehl: Adjoint-based predictor-
corrector sequential convex programming for parametric nonlinear
optimization. SIAM J. Optim., Vol. 22, No. 4, pp. 1258–1284, 2012.

6. Q. Tran Dinh, S. Gumussoy, W. Michiels and M. Diehl: Combining
convex-concave decompositions and linearization approaches for solving
BMIs, with application to static output feedback. IEEE Trans. Autom.
Control, Vol. 57, No. 6, pp. 1377–1390, 2012.

277

278 PUBLICATIONS BY THE AUTHOR CONTAINS IN THE THESIS

Book chapters

1. Q. Tran Dinh and M. Diehl: Local convergence of sequential convex
programming for nonlinear programming. In: Diehl, M., Glineur, F.,
Jarlebring, E. and Michiels, W. (Eds.): Recent advances in optimization
and its application in engineering. Springer-Verlag, pp. 93–102, 2010.

2. Q. Tran Dinh, C. Savorgnan and M. Diehl: Real-time sequential convex
programming for optimal control applications. In: Bock, H., Phu, H.X.,
Rannacher, R. and Schlöder, J.P. (Eds.): Modeling, Simulation and
Optimization of Complex Processes. Springer-Verlag, pp. 91–101, 2012.

Articles in international conference proceedings

1. Q. Tran Dinh, W. Michiels, S. Gros and M. Diehl: An inner convex
approximation algorithm for BMI optimization and applications in control.
Accepted for publication in Proc. of 51th IEEE Conference on Decision
and Control, Hawaii, US, December, 6 pages, 2012.

2. Q. Tran Dinh, C. Savorgnan and M. Diehl: Real-Time Sequential Convex
Programming for Nonlinear Model Predictive Control and Application to
a Hydro-Power Plant. Proc. of the 50th IEEE Conference on Decision
and Control, Orlando, Florida, USA, pp. 5905–5910, 2011.

3. Q. Tran Dinh and M. Diehl: An application of sequential convex
programming methods to time optimal trajectory planning of a car motion.
Proc. of the 48th IEEE Conference on Decision and Control, Shanghai,
China, 4366–4371, 2009.

4. I. Necoara, C. Savorgnan, Q. Tran Dinh, J.A.K. Suykens and M.
Diehl: Distributed Nonlinear Optimal Control Using Sequential Convex
Programming and Smoothing Techniques. Proc. of the 48th IEEE
Conference on Decision and Control, Shanghai, China, pp. 543–548,
2009.

Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering

Department of Electrical Engineering
SISTA Research Group and Optimization in Engineering Center (OPTEC)

Kasteelpark Arenberg 10, Bus 2446
B-3001 Heverlee

	Contents
	List of acronyms and notations
	Introduction
	Motivation and objectives
	Three main concepts
	Contributions of the thesis and overview

	I Sequential Convex Programming
	Predictor-corrector sequential convex programming
	Problem statement and contribution
	Three ingredients of the algorithm
	Adjoint-based predictor-corrector SCP algorithm
	Contraction estimate
	Applications in nonlinear programming
	Conclusion

	SCP applications in optimal control
	NMPC of a hydro power plant
	Time optimal trajectory planning problem

	Inner convex approximation methods for nonconvex SDP
	A short literature review and contribution
	Problem statement and optimality condition
	Generalized inner convex approximation algorithms
	Conclusion

	BMI optimization in robust controller design
	BMI optimization in static feedback control
	Implementation details
	Linear output-feedback controller design
	H2 control: BMI optimization approach
	H control: BMI optimization approach
	Mixed H2/H control: BMI optimization approach
	Conclusion

	II Decomposition in Separable Optimization
	Existing approaches in separable optimization
	Problem statements
	Related existing approaches
	Lagrangian decomposition in separable convex programming
	Parallel algorithms vs distributed algorithms
	Benchmarking algorithms with performance profiles

	Dual decomposition algorithms via the excessive gap technique
	Smoothing via proximity functions
	Solution of primal subproblems and excessive gap condition
	Decomposition algorithm with two primal steps
	Decomposition algorithm with two dual steps
	Decomposition algorithms with switching steps
	Application to strongly convex case
	Extensions to inexact case
	Comparison and implementation aspects
	Numerical tests
	Conclusion

	Path-following gradient decomposition algorithms
	Smoothing via self-concordant barrier functions
	Path-following gradient-based decomposition algorithm
	Accelerating gradient decomposition algorithm
	Numerical tests
	Conclusion

	An inexact perturbed path-following decomposition algorithm
	Self-concordance of smoothed dual function
	Inexact perturbed path-following decomposition method
	Exact path-following decomposition algorithm
	Discussion on implementation
	Numerical tests
	Conclusion

	Application to separable nonconvex optimization
	SCP approach for separable nonconvex optimization
	Two-level decomposition algorithm
	Numerical tests
	Conclusion

	Conclusion
	Conclusion
	Future research directions

	The proof of technical statements
	The proof of technical statements in Chapter 7
	The proof of technical statements in Chapter 9

	Bibliography
	Publications by the author contains in the thesis

